x∼n(0,1)求Y=e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:00:05
全微分方程通解为(e^x-1)(e^y-1)+c
这是二维的Maxwell分布,你学大学物理会遇到三维的.不过对于只求期望的话,不用求它的分布函数.E((X^2+Y^2)^(1/2))=∫∫(x^2+y^2)^(1/2)dF(x,y)=∫∫(x^2+
X~N(1,2)则E(X)=1D(X)=2Y~U(0,2)则E(Y)=1D(Y)=1/3E(Y^2)=D(Y)+(E(Y))^2=4/3X和Y独立则E(X-Y^2)=E(X)-E(Y^2)=1-4/3
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
E(Z)=E(X^2+Y^2)=E(X^2)+E(Y^2)=[DX+(EX)^2]+[DX+(EX)^2]=1+0+1+0=2因为DX=E(X^2)-(EX)^2D(Z)=D(X^2+Y^2)=D(X
说实话,这个题不是一般的简单,只要套公式即可.E(Z)=1/3*1+1/4*0=1/3D(Z)=1/9*9+1/16*16=2
瀑布汗.(X^2+Y^2)/(X^2+Y^2)=1E(1)=1再问:为什么E(1)=1?我知道(X^2+Y^2)/(X^2+Y^2)=1得出e(1)但为什么E(1)=1?再答:常数的期望等于自己,这题
X与Y相互独立,且都服从正态分布N(0,0.5)-->U=X-YEU=EX-EY=0DU=0.5+0.5=1U~N(0,1)E|X-Y|=E|U|为正态分布的一阶绝对中心矩=(2/pi)^(1/
瀑布汗....(X^2+Y^2)/(X^2+Y^2)=1E(1),=1
φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+
φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+
根号(2*pi)积分可以化成极坐标做.
X~N(0,1)则Y=X^2~~卡方分布X^2(1)所以EX^2=1E(X^4)=DY+(EY)^2=2+1=3E(X^3)=0.pdf概率密度函数关于y对称.当然,也是可以像沙发同志那样做.不过有点
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
回答:根据题意,Y∼N(μ,1),X=e^(Y),y=h(x)=lnx,h'(x)=1/x.于是,X的概率密度为ψ(x)=[1/√(2π)]{e^[-(1/2)(lnx-μ)^2]}(1/
n趋向于无穷时,ln(e^n+x^n)/n属于无穷比无穷型.用罗比达法则求一次导得(e^n+(x^n)*lnx)/(e^n+x^n)..常数分离得lnx+(1-lnx)/[1+(x/e)^n]讨论:若
利用数学期望和方差的性质E(Y)=E(3X+2)=3E(X)+2=15+2=17D(Y)=D(3X+2)=9D(X)+0=9.
可以这么做:因为X,Y相互独立,所以E[X^2/(X^2+Y^2)]=E[Y^2/(X^2+Y^2)].而E[X^2/(X^2+Y^2)]+E[Y^2/(X^2+Y^2)]=E[(X^2+Y^2)/(
N(0,1),y=e^(-x)y>0X的密度函数是fX(x)=1/√2π*e^(-x^2/2)那么FY(y)=P(Y0
[e^(x+y)-e^x]dx+[e^(x+y)+e^y]dy=0(e^y-1)de^x+(e^x+1)de^y=0de^x/(e^x+1)+de^y/(e^y-1)=0dln(e^x+1)+dln(