X服从均值为2的指数分布,概率

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:05:11
X服从均值为2的指数分布,概率
设两个随机变量X 和Y 相互独立, X 服从均值为2 的指数分布,Y 服从均 值为4 的指数分布,问X>Y的概率是多

X和Y相互独立-->f(x,y)=f(x)*f(y)=(1/2)e^(-x/2)*(1/4)e^(-y/4)p(X>Y)=∫∫f(x,y)dxdy(积分区域为y=0,y=x所围面积)=∫(0-->∞)

随机变量X服从参数为λ的指数分布,那X+a(a为一常数)服从什么分布,概率密度函数的形式是怎样?

经济数学团队帮你解答,有不清楚请追问.满意的话,请及时评价.谢谢!

设随机变量X=e^y服从参数为e的指数分布.求随机变量Y的概率密度函数

先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e

X与Y独立,且X服从(0,1)上的均匀分布,Y服从参数为1 的指数分布,求Z=X+Y的概率密度?

有卷积公式啊,fz(z)=[fx(Z-Y)fy(y)dy其中[表示积分号,积分区域是整个定义域对于这个题,代入上式fz(z)=[1*e的-y次方dy积分区域是0到1,积分出来等于1,在其他范围内是0,

随机变量X服从参数为2的指数分布,随机变量Y服从参数为4的指数分布,求E(2X^2+3Y)=多少?

对于X有:DX=1/4EX=1/2所以EX²=DX+(EX)²=3/4对于Y有EY=1/4所以E(2X²+3Y)=2EX²+3EY=9/4注:各个版本教材对指数

设X服从参数设X服从参数为λ=1的指数分布,求Y=X^2的概率密度.

X的概率密度函数:fX(x)={e^-x,x>0{0,x0时,有FY(y)=P{X^2≤y}=P{-√y≤x≤√y}=∫(-√y→√y)fX(x)dxfY(y)=d[FY(y)]/dy=d[∫(-√y

设随即变量X服从参数为2的指数分布,则Y=e^x的概率密度为_____.

答案是2/(Y*Y*Y)求函数的概率密度有一个公式,如果Y(X)的导数是非0的,则可以用这个公式.这个题Y关于X的导数是大于0的,所以:(1)求Y关于X的函数的反函数,此题Y的反函数就是:Y的对数;(

设随机变量X服从参数为2的指数分布,证明Y=e^-2X服从U(0,1)

解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!

设随机变量X和Y相互独立,X服从区间(0.2)的均匀分布,Y服从均值为1/2的指数分布 求P(Y《X)

X和Y相互独立则有fx(x)*fy(y)=f(x,y)Y服从均值为1/2的指数分布,即参数1/λ=1/2,λ=2然后就可以对联合分布P(Y

设随机变量X服从参数λ 为的指数分布,则概率 P(X>EX)?

X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X

设随机变量X服从参数2的指数分布,则Y=1-e^(-2x)的概率密度为?

F(y)=P(Y≤y)=P(1-exp(-2X)≤y)=P(X≤-ln(1-y)/2)=∫[0,-ln(1-y)/2]2exp(-2x)dx=y0

概率指数分布家设随机变量X服从参数为λ的指数分布,且X落入区间(1,2)内的概率达到最大,则λ=?

X落入区间(1,2)内的概率P=积分(1-->2)λe^(-λx)dx=e^(-λ)-e^(-2λ)概率达到最大-->dP/dλ=0-->λ=ln2