x服从标准正太,x1,x2,........x2n是来自于x的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:14:29
x服从标准正太,x1,x2,........x2n是来自于x的
随机变量X1,X2……Xn均服从标准正态分布且相互独立,记X(1)=minXi(1

为了方便令F(X1)=ф(X(1)))F(X1)=1-(1-F(X1))^nf(x1)=n*((1-F(x1))^(n-1))*F'(x1)E=ф(X(1)))*f(x1)从负无穷到正无穷的积分积分符

设随机变量X1,X2,X3相互独立,其中X1~b(5,0.2),X2~,X)4,0(N3服从参数为3的泊松分布.

随机变量X1,X2,X3相互独立故D(Y)=D(X1-2X2+3X3)=D(X1)+D(2X2)+D(3X3)=D(X1)+4D(X2)+9D(X3)X1~b(5,0.2),二项分布所以D(X1)=5

设X1,X2,X3相互独立,都服从b(1,0.5),X=X1+X2+X3,则P(X >1) =( ).

把有两个1和三个1的情况加起来就好了.或者1减去一个1和没有1的情况.

若x1,x2服从标准正态分布,x1+x2与x1-x2是否相互独立

Cov(X1+X2,X1-X2)=Var(X1)-Cov(X1,X2)+Cov(X1,X2)-Var(X2)=Var(X1)-Var(X2)=0所以X1+X2和X1-X2不相关.如果(X1,X2)的联

随机变量x相互独立且服从标准正态分布,(x1-x2)/√(x3^2-x4^2)服从什么分布 答案是t(2)

x3^2+x4^2服从卡方(2)(x1-x2)服从N(0,2)根据t分布定义[(x1-x2)/√2]/√(x3^2+x4^2)/2=(x1-x2)/√(x3^2+x4^2)服从t(2)

卡方分布如何求自由度设X1,X2,X3,X4是来自正太总体N(0.4)的简单随机样本,X=a(X1-2X2)^2+b(3

自由度肯定是2,就是可以转化成两个标准正太分布的平方之和,a,b都是来让后边的两个分布都等于标准正太分布的.再问:我自己已经做出来了,不过分还是给你好了……

设随机变量X1,X2,X3,X4,都服从正太分布n(1,1)且k[Σ(xi)-4]服从自由度为n

中括号后应该有个平方吧?k=1/4,n=1.中括号里是正态分布N(0,4),所以如果表达式是卡方分布的话,那自由度必然为1,而且修正系数k必为1/4再问:答案是对的,不过那个题中的确没有平方,可能是盗

)设X服从N(0,1),(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本,Y=(X1+X2+X3+)^2

(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本所以(X1+X1+X3)~N(0,3)(X4+X5+X6)~N(0,3)所以而1/√3(X1+X1+X3)~N(0,1);1/√3(X4

已知奇函数f(x)对任意正实数x1x2 (x1≠x2)恒有(x1-x2)[f(x1)-f(x2)]

【分析】根据条件,确定函数的单调性,再比较函数值的大小即可.【解答】不妨假设x1>x2>0,则x1-x2>0∵(x1-x2)(f(x1)-f(x2))>0∴f(x1)-f(x2)>0∴f(x1)>f(

X服从正态分布 ,为什么 (X1+X2)^2/2服从自由度为1的卡方分布 ,

依题意,X1、X2均服从标准正态分布(X1+X2)/√2服从N(0,1)相当于只有1个标准正态分布的平方,所以自由度为1的卡方分布

变量X1,X2,..,Xn互相独立且都服从(0,1)上的均匀分布,求U=max{X1,X2,..,Xn}和V=min{X

所有关于min、max这种题都有一个固定的下手点,就是U≤u→X[1]、X[2]…X[n]里面最大的都小于等于u→每个X[1]、X[2]…X[n]都小于等于u每个都小就可以通过独立事件的概率乘法公式计

求联合概率分布的问题如果x1服从标准正态分布在已知x1的条件下,x2服从均值-5+2x1方差为1的正态分布如何求x1,x

不太懂联合概率分布的意思可能和我们教材不一样吧我只会求X2的方差为4.不好意思.没有期望怎么能求出F(X)的概率分布呢?

设总体X服从正态N(μ,σ²),x1,x2,xn为其总体的样本,求该样本的联合概率密度

fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,

设总体X~N(0,σ^2),X1、X2为X的样本,求证(X1+X2)^2/(X1-X2)^2服从分布F(1,1)

N(0,σ^2)E(X1+X2)=EX1+EX2=0D(X1+X2)=DX1+DX2=2σ^2X1+X2~N(0,2σ^2)同理:X1-X2~N(0,2σ^2)所以1/√2σ(X1+X2)~N(0,1

设X1,X2,...Xn是取自正态总体X~N(μ,σ^2)的一个样本,则1/(σ^2)∑(X-μ)^2 服从的分布是()

服从X^2(n-1)分布,那个X不是未知数X,长得像而已,手机打不出来,抱歉.因为(x-u)^2求和,等于n-1倍的样本方差平方,然后就是定理了,手机不好打阿~

X服从标准正态分布,即N(0,1).X1,X2为从X中取的2个数,求2X1+3X2的方差.

X1和X2是独立的吧?D(2X1+3X2)=4D(X1)+9D(X2)=4x1+9x1=13再问:我也是一直在想是不是独立的。现在的观点也是两者相互独立。谢

X1,X2分别服从标准正态分布,那么Δ=X1-X2的期望和方差怎么求啊?

1、x1、x2是否相互独立,与你得出的Δ=X1-X2无关.只与你使用环境有关,与你建模时假设有关,也就是实际情况.2、如果相互独立,标准正态分布的函数也是标正分布,期望与方差根据公式可求的.如果不独立