x趋近于0,根号下x等价无穷小量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:41:23
x趋近于0,根号下x等价无穷小量
当x趋近于0时,三次根号下(x^2+x^1/2)是x的几阶无穷小?

1/6因为x趋于零时,x^2是x^1/2的高阶无穷小,所以令原式除以x的k次方等于常数,则[x^1/2+o(x^1/2)]^1/3/x^k={[x^1/2+o(x^1/2)]/x^3k}^1/3=A(

{根号下(1+根号下(x+根号x))}-1 x趋向于0,与mx^n是等价无穷小,求m n

 我第二行写错了,根号x改成x的1/4次,反正就是这种方法,分子或分母有理化降次,再用运算法则

等价无穷小,当x趋近于0时,ln(1+x)~x是怎么证明的

x趋近0时,limln(1+x)/x=1,所以就等价啊.

当x趋近于0,e^tanx -e^x是x^n的等价无穷小,求n=

e^tan-e^x=e^x(e^(tanx-x)-1),x→0时,e^x→1,e^(tanx-x)-1等价于tanx-x,所以e^tan-e^x等价于tanx-x.所以,x→0时,tanx-x等价于x

等价无穷小代换X趋近于0时 ln(1+x)~x 和 (e^x)-1~x 怎么证明.

lim{x->0}ln(1+x)/x=lim{x->0}1/x×ln(1+x)=lim{x->0}ln(1+x)^{1/x}=ln[lim{x->0}(1+x)^{1/x}]=lne=1令e^x-1=

x趋近于0时ln(1+1/x)能等价无穷小换成1/x么

x趋近于0时ln(1+1/x)能等价无穷小换成1/x

根号(1+tanx)-根号(1-sinx)在x趋向于0时的等价无穷小?

lim[√(1+tanx)-√(1-sinx)]/x^k=常数,下面求k分子有理化=lim[√(1+tanx)-√(1-sinx)][√(1+tanx)+√(1-sinx)]/(x^k[√(1+tan

当x趋近于0时,证明根号下1+X的正切减根号下1+X的正弦的差的等价无穷小为x的3次方的四分之一

√(1+tanx)-√(1+sinx)=(tanx-sinx)/[√(1+tanx)+√(1+sinx)]分母的极限是2,分子tanx-sinx=tanx(1-cosx),x→0时,tanx等价于x,

利用等价无穷小的替换求极限 {ln[x+√(1+x^2)]}/x x趋近于0

x->0时,ln[x+√(1+x^2)]=ln{1+[√(1+x^2)+x-1]}~√(1+x^2)+x-1=√(1+x^2)-1+x~x^2/2+x~x原式=lim{x->0}x/x=1

等价无穷小的问题当x趋近于0,a为非零常数.(1+x)^a减1 与ax 等价无穷小.这个怎么理解啊

当x趋近于0lim[(1+x)^a-1]=lim{[(1+x)^(1/x)]^(ax)-1}=lim[e^(ax)-1]∵x趋近于0,有e^x-1x∴ax趋近于0,有e^(ax)-1~ax所以有(1+

求极限、这道题是X趋近于1、为什么能用X趋近于零时的等价无穷小?

x-1是趋向0的所以将x-1进行无穷小替换再答:再答:如图所示,懂了吗?若芢有不明白请追问哦再答:不知我表达清楚了没有,有疑问要追问的哦~望采纳最快且最佳回答~^_^

诚心请教下:当x趋近于0时,(三次根号下(1+ax^2))-1与cosx-1为等价无穷小,则a=?

当x趋近于0时,(三次根号下(1+ax^2))-1等价于(1/3)ax^2,同济五版高数上册P57例1cosx-1为等价于(-1/2)x^2,同济五版高数上册P58例2当x趋近于0时,(三次根号下(1

微积分 等价无穷小的代换 当X趋近于0时,(1+X平方) —1 根号下(1+X)再减一 趋近于 多少?

第一个应该是(1+x)^2-1吧?当X趋近于0时,(1+x)^a-1~ax,第一个为2x,第二个为x/2.

当x趋近于0时,(二次根号下(1+Kx^2))与cosx-1为等价无穷小,则K=?

(1+Kx^2)^(1/2)~1+Kx^2/2cosx-1~-x^2/2所以你是不是前面少减去个1了Kx^2/2=-x^2/2,K=-1

limx^2sin(1/x^2),x趋近于0,为什么不能用等价无穷小替换

因为sin(1/x^2)不存在极限只能根据定理【无穷小*有界函数=无穷小】再问:那运用无穷小替换时应该注意什么条件呢?比如什么情况下能用什么情况下不能用?再答:首先是当x趋近于0时其次函数当x趋近0时

当x趋近于0时,e^2x-cos x与sin x相比是 高阶/低阶/等价/同阶不等价无穷小

答:lim(x→0)(e^2x-cosx)/sinx(0--0型可导应用洛必达法则)=lim(x→0)(2e^2x+sinx)/cosx=(2+0)/1=2是同阶无穷小