x=6 sint ,y=8 cost参数方程求解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:54:20
x²+y²=25sin²tz²=25cos²t所以x²+y²+z²=25
证一:为了方便,记x`=dx/dt,y`=dy/dt.则d²y/dx²=d(dy/dx)/dx=d(y`/x`)/dx=[d(y`/x`)/dt]/(dx/dt)=(y`/x`)`
dx/dt=(e^t)sint+(e^t)cost=(e^t)(sint+cost)dy/dt=(e^t)cost-(e^t)sint=(e^t)(cost-sint)dy/dx=(dy/dt)/(d
这不是今年新课标I的高考题么?很简单的(Ⅰ)由题意可知C1的普通方程为(x-4)²+(y-5)²=25即C1:x²+y²-8x-10y+16=0∵x=ρcosθ
∵x=1+t²,y=cost==>dx/dt=2t,dy/dt=-sint∴d²y/dx²=d(dy/dx)/dx=(d((dy/dt)/(dx/dt))/dt)/(dx
再答:这只是交点极坐标的其中一种表示
∵(sint+cost)²=sin²t+2sintcost+cos²t=1+2sintcost∴x²=1+2y∴y=x²/2-1/2
∫sint/(cost+sint)dt=(1/2)∫[(sint+cost)+(sint-cost)]/(cost+sint)dt=(1/2)∫dt+(1/2)∫(sint-cost)/(cost+s
(costdt)/(-sintdt)=-cott再答:或-1/tant
t=arccos(1-y)x=arccos(1-y)-sin[arccos(1-y)]【sin(arccosx)=√(1-x²)】=arccos(1-y)-√[1-(1-y)²]=
需要注意的是有个隐藏条件:(sint)^2+(cost)^2=1即(sint+cost)^2-2sint*cost=1将x=cost+sint,y=sint*cost代入得x^2-2y=1,即y=(x
解dy/dx=(1-sint)'/(t²+cost)'=(-cost)/(2t-sint)
x=sint-costy=sint+cost则:x+y=2sintx-y=-2cost所以:(x+y)^2+(x-y)^2=2再问:这个不像圆的方程啊再答:这个是圆的方程。(x+y)^2+(x-y)^
dx=(7-7cost)dtdy=(7sint)dtdy/dx=(7sint)/(7-7cost)再问:有两个答案耶,哪个是对的呀再答:我的应该是对的,当然公因子7可以约掉
解析x=acost+atsinty=asint-atcostdx=-asint+asint+atcostdy=acost-acost+atsint∴dy/dx=(acost-acost+asint)/
dy/dt=-sintdx/dt=cost∴dy/dx=-sint/cost=-tant
x-4=5cost,y-5=5sint(x-4)^2=25cos^2t,(y-5)^2=25sin^2t(x-4)^2+(y-5)^2=25(cos^2t+sin^2t)(x-4)^2+(y-5)^2
符号不好输入,直接上图~再问:嗯,那个图是怎么画出来的?我的参考资料有这个图,但我不知道怎么画出来,能给我说说吗?这个图形还有个圆是怎么回事?辛苦了,谢谢再答:这个不是准确的图啦~~只是一个示意图。大
曲线x=t-sint,y=1-cost,z=4sin(t/2)在点(π/2-1,1,2√2),对应参数值t=π/2切向量T=(x'(t),y'(t),z'(t))|t=π/2=(1-cost,sint
dy/dx=y'/x'=tsint/(-sint)=-t再问:在详细一点呗再答:dy/dx=(dy/dt)/(dx/dt)=(cost-cost+tsint)/(-sint)=-t