y-3y 2y=2xex的通解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:13:04
求导函数可得,y′=(1+x)ex+2当x=0时,y′=3∴曲线y=xex+2x+1在点(0,1)处的切线方程为y-1=3x,即y=3x+1.故选B.
dy/dx=3y=3x+c
(x-2)dy-ydx=(x-2)dy-yd(x-2)联想一下,对于一个除式做微分的时候,d(f(x)/g(x))=(gdf-fdg)/(g^2)这里的形式是类似的,因此凑这样一个形式:[(x-2)d
求微分方程(2x-y²)y'=2y的通解由原式得:(2x-y²)dy=2ydx,即有2ydx+(y²-2x)dy=0.(1)P=2y,Q=y²-2x;ͦ
特征方程r^-2r+1=0r=1(二重根)所以齐次通解是y=(C1x+C2)e^x设特解是y=ae^(-x)y'=-ae^(-x)y''=ae^(-x)代入原方程得ae^(-x)+2ae^(-x)+a
∵齐次方程y"+2y'+y=0的特征方程是r^2+2r+1=0,则r=-1(二重根)∴此齐次方程的通解是y=(C1x+C2)e^(-x)(C1,C2是常数)∵设原方程的解为y=Ax+B代入原方程,得A
你这个是二阶常系数齐次线性微分方程属于r1=r2=1的情况代入公式,y=(C1+C2x)e^(r1x)=(C1+C2x)e^x好好看看书,公式要记得!
1.设p=y'=dy/dx则y''=d(y')/dx=dp/dx=(dp/dy)*(dy/dx)=p*(dp/dy)∴原方程化为:p*(dp/dy)*(1+y^)=2y*p^p=0或(1/p)dp=[
等于0(什么叫通解?)
对应齐次方程y″-3y′+2y=0的特征方程为λ2-3λ+2=0,解得特征根为λ1=1,λ2=2.所以齐次微分方程y″-3y′+2y=0的通解为y1=C1ex+C2e2x.因为非齐次项为f(x)=2x
微分方程y''-3y'+2y=xex对应的齐次微分方程为y''-3y'+2y=0特征方程为t2-3t+2=0解得t1=1,t2=2故齐次微分方程对应的通解y=C1ex+C2e2x因此,微分方程y''-
特征方程a^2+2a+5=0有共轭复根-1+2i,-1-2i所以通解为y=e^(-x)(C1cos2x+C2sin2x)再问:C1��ʲô再问:�������e��-x��再问:�躯��xe��sin
设y=e^ax带入y''+y'-2y=0求导化简得a^2+a-2=0(a-1)(a+2)=0a=1,a=-2通解为y=e^x+e^-2x+c
特征方程为r²-r-2=0解得r1=2,若=-1∴原方程的通解为:y=C1e^(2x)+C2e^(-x)
对应的特征方程是a^2+a+2=0,解得a是α±iβ的形式的,那么通解就是c1*e^(αx)*sin(βx)+c2*e^(αx)*cos(βx)
特征方程为r²+r+2=0,则r=(-1±√7i)/2∴a=-1/2,b=√7/2∴齐次方程的通解为Y=e^(-x/2)[C1cos(√7x/2)+C2sin(√7x/2)]再求非其次方程的
由题意得,y′=ex+xex,∴在x=1处的切线的斜率是2e,且切点坐标是(1,e),则在x=1处的切线方程是:y-e=2e(x-1),即2ex-y-e=0,故答案为:2ex-y-e=0.
这是高阶齐次线性微分方程,采用求特解的方法.原方程的特征方程是
由已知,得5x=z+x,即z=4x,①3x=y+z,②由①②,得y=-x,③把①③代入x−2y2y+z,得x−2y2y+z=x+2x−2x+4x=32.故选B.