y=(x-1)e^

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:59:43
y=(x-1)e^
dy/dx,y=(1+x+x^2)e^x

dy/dx=(1+x+x²)'*e^x+(1+x+x²)*(e^x)'=(1+2x)e^x+(1+x+x²)e^x=(2+3x+x²)e^x

Y=(e^x+1)/(e^x-1) Y=(x+cosx)/(x+sinx)

Y=(e^x+1)/(e^x-1)=e^2x-1(平方差公式)y'=(e^2x)'(2x)'=e^2x*2=2e^2x(复数求导)Y=(x+cosx)/(x+sinx)=[(x+cosx)'(x+si

[e^(x+y)-e^x]dx+[e^(x+y)-e^y]dy=0求通解

全微分方程通解为(e^x-1)(e^y-1)+c

y''-y'=e^x + 1 的通解

特征方程r^2-r=0r=0,r=1所以齐次通解是y=C1+C2e^x等号右边分为两部分y1=e^x包含在齐次通解中所以设特解y1*=axe^xy1*'=a(1+x)e^xy1*''=a(2+x)e^

y''(e^x+1)+y'=0的通解

∵y''(e^x+1)+y'=0==>(e^x+1)dy'/dx=-y'==>dy'/y'=-dx/(e^x+1)==>dy'/y'=-e^(-x)dx/(1+e^(-x))==>dy'/y'=d(1

y=(e^x-e^-x)/2

令t=e^x>0则y=(t-1/t)/2t²-2yt-1=0解之取正值得t=y+√(y²+1)所以x=ln[y+√(y²+1)]反函数即为y=ln[x+√(x²

高数题 求微分方程通解.y''-3y'+2y=e^x(1+e^2x)

特征方程r²-3r+2=0得r=1,2齐次方程通解y1=C1e^x+C2e^2x方程右边为e^x+e^3x设特解为y*=axe^x+be^3x则y*'=a(1+x)e^x+3be^3xy*"

y=1-e^x/1+e^x 的奇偶性

题目1-e^x方是一起在分子上的还是e^x在分子上1-是在外面的?若题目是y=(1-e^x)/(1+e^x),则f(x)=(1-e^x)/(1+e^x),f(-x)=(1-e^-x)/(1+e^-x)

y'-2y=(e^x)-x

首先求齐次方程通y'-2y=0特征方程:x-2=0x=2为特征根∴y=Ce^(2x)设方程的一个特解为y=Ae^x+ax+b代入方程:Ae^x+a-2Ae^x-2ax-2b=-Ae^x-2ax+a-2

求通解:y'e^(x-y)=1

dy/dx*e^(x-y)=1即dy/e^y=dx/e^x得e^(-y)=e^(-x)+C这就是方程的通解

大学概率:设随机变量(X,Y)具有分布函数F(x,y)=1-e^(-x)-e^(-y)+e^(-x-y),x>0,y>o

详细过程请见下图,希望对亲有帮助(看不到图的话请Hi我,审核要一段时间)

y=x*(1-1/e),

这就是经过原点,且斜率为1-(1/e)=(e-1)/e的直线啊,很容易画的!

统计学证明E(X-Y)=E(X)-E(Y)

这是一个二维的随机变量,不知道是连续或是离散的不妨设为离散的,(对于连续的只要把求和符号换成积分符号就行啦!)设(X,Y)的联合分布列和边际分布列为:P(X=ai,Y=bj)=pij,i,j=1,2,

E[E(X|Y)]=E(x) 怎么证明

题目是不是e^(e^(x/y))=e^x再问:亲是期望啊现在已经会了多谢再答:好的,恭喜你!

y'e^(x-y)=1通解?

y'e^(x-y)=1即dy/e^y=dx/e^x等式两边积分得到e^(-y)=e^(-x)+C,C为常数所以方程的通解为:y=-ln|e^(-x)+C|,C为常数

y=e^x/e^x+1 的反函数 是什么

y=e^x/(e^x+1)y(e^x+1)=e^xe^x(1-y)=yx=ln[y/(1-y)]反函数y=ln[x/(1-x)]#

E[(X-E(X))*(Y-E(Y))]=E(XY)-E(X)*E(Y)这个公式怎么证明?

要注意E(kX)=kE(X),k是常数E[(X-E(X))*(Y-E(Y))]=E[XY-XE(Y)-YE(X)+E(X)E(Y)]=E(XY)-E(X)E(Y)-E(Y)E(X)+E(X)E(Y)=

Y=e^1/2*X求导

是不是e^(x/2)?则这是复合函数y=e^u,u=x/2所以y'=e^u*u'=e^(x/2)*1/2

求微分方程的通解 {[e^(x+y)]-e^x}dx+{[e^(x+y)]+ey}dy=0 答案是(e^x+1)(e^y

[e^(x+y)-e^x]dx+[e^(x+y)+e^y]dy=0(e^y-1)de^x+(e^x+1)de^y=0de^x/(e^x+1)+de^y/(e^y-1)=0dln(e^x+1)+dln(