y=Inx x=0 y=Ina y=Inb围成的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:53:24
y=Inx x=0 y=Ina y=Inb围成的面积
求微分方程y"-2y'+y=0的通解.

你这个是二阶常系数齐次线性微分方程属于r1=r2=1的情况代入公式,y=(C1+C2x)e^(r1x)=(C1+C2x)e^x好好看看书,公式要记得!

(x+y)y'+(x-y)=0的通解

详见:http://hi.baidu.com/%B7%E3hjf/album/item/5fa110df8b26067395ee37a7.html

y'=y-x,y(0)=0,

y'=y-x,y(0)=0,求特解!先求齐次方程y'-y=0的通dy/dx=y,分离变量得dy/y=dx;积分之得lny=x+lnC₁;即y=e^(x+lnC₁)=C̀

y''''+y''+y=0 通解

其次方程解设为e^(ax)代入有a^4+a^2+1=0=>a^2=e^(j2π/3)或e^(j4π/3)推出次方程的四个解为e^(jπ/3)e^(j2π/3)e^(j4π/3)e^(j5π/3)故原方

求y'=y/(y-x)

∵令y=xt,则y'=xt'+t代入原方程,得xt'+t=t/(t-1)==>xt'=(2t-t^2)/(t-1)==>(t-1)dt/(2t-t^2)=dx/x==>2dx/x+[1/t+1/(t-

求y’’-2y’+2y=0

z1=1-i,z2=1+i,则a=1,b=2,:代入e^(ax)(C1cosbx+C2sinbx).于是微分方程的通解为e^(1x)(C1cos2x+C2sin2x).

求微分方程y''+y'-y=0的通解

答:特征方程为:r^2+r-1=0所以特征根为:r1=(-1+√5)/2,r2=(-1-√5)/2所以通解为:y=C1e^((-1+√5)/2)+C2e^((-1-√5)/2)

微积分y’’+2y’+5y=0的通解

特征方程a^2+2a+5=0有共轭复根-1+2i,-1-2i所以通解为y=e^(-x)(C1cos2x+C2sin2x)再问:C1��ʲô再问:�������e��-x��再问:�躯��xe��sin

求微分方程y''+y'-2y=0 的通解.

设y=e^ax带入y''+y'-2y=0求导化简得a^2+a-2=0(a-1)(a+2)=0a=1,a=-2通解为y=e^x+e^-2x+c

微分方程y''+2y'-3y=0通解

齐次方程:r^2+2r-3=0r=-3orr=1通解为C1e^(-3x)+C2e^x

求微分方程y"-y'-2y=0的通解

特征方程为r²-r-2=0解得r1=2,若=-1∴原方程的通解为:y=C1e^(2x)+C2e^(-x)

微分方程y"+y'+2y=0的通解

对应的特征方程是a^2+a+2=0,解得a是α±iβ的形式的,那么通解就是c1*e^(αx)*sin(βx)+c2*e^(αx)*cos(βx)

y'''+2y''+y'=0的通解

这是高阶齐次线性微分方程,采用求特解的方法.原方程的特征方程是

y''+y'-2y=0求微分方程通解

其特征方程是z^2+z-2=0解得特征根为z1=1,z2=2于是微分方程的通解为:y=C1*exp(z1*x)+C2*exp(z2*x)=C1*exp(x)+C2*exp(2x)像这种题,你得达到能口

2y''+y'-y=0

2y''+y'-y=0特征方程:2r^2+r-1=0根为:-1,1/2y=C1e^(-x)+C2e^(x/2)

微分方程Y``-4Y`+5Y=0通解为

微分方程Y``-4Y`+5Y=0的特征方程为r^2-4r+5=0r^2-4r+4+1=0(r-2)^2=-1=i^2特征方程两根为共轭虚根为2+i和2-i所以微分方程的通解为y=e^2x{C1cosX

已知y+y'*x²=0,求y=?

0或Ce^(1/x),这是一阶线性非齐次微分方程

y-12/y=?

(y^2-12)/y