y=lntanx,求dy dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:13:43
方程两边求关x的导数ddx(xy)=(y+xdydx); ddxex+y=ex+y(1+dydx);所以有 (y+xdy
由微分方程dydx=2xy,得dyy=2xdx(y≠0)两边积分得:ln|y|=x2+C1即y=Cex2(C为任意常数)
y'=1/(1+x²)
你可以先把图片保存下来,再打开,旋转再放大,不然可能看不清楚
你这个直接求积分吧用分步积分即可y=∫xe^xdx=∫xde^x=x*e^x-∫e^xdx=x*e^x-e^x+C(c为常数)
∵齐次方程y''-y'=0的特征方程是r2-r=0则特征根是r1=0,r2=1∴齐次方程的通解是y=(C1x+C2)e^x(C1,C2是积分常数)设原微分方程的一个特解是y=Ax2+Bx代入原微分方程
再答:希望采纳欢迎追问,再答:类似的你可以得到,看成y型区域的积分再问:谢谢~再答:不用谢,希望下次还能继续回答你的问题
∵齐次方程y''-y=0的特征方程是r²-1=0,则r=±1∴齐次方程y''-y=0的通解是y=C1e^t+C2e^(-t)(C1,C2是积分常数)∵设原方程的一个解为y=Asinx+Bco
方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1
dy/dx=1/√(1+x^2)+sec^2x/tanx再问:过程可以列举下吗?再答:一步就出来了啊,最基本的求导。dy/dx=1/√(1-x^2)+sec^2x/tanx
arcsinx+x/√(1-x^2)+1/(sinxcosx)再问:可以写出步骤吗?谢谢!再答:dy/dx=(x)'arcsinx+x(arcsinx)'+1/tanx*(tanx)'=arcsinx
∵令y=xt,则y'=xt'+t代入原方程,得xt'+t=t/(t-1)==>xt'=(2t-t^2)/(t-1)==>(t-1)dt/(2t-t^2)=dx/x==>2dx/x+[1/t+1/(t-
令p=y'则y"=pdp/dy代入原式:pdp/dy+p=pydp/dy+1=ydp=(y-1)dy积分:p=(y-1)²/2+c1即dy/dx=(y-1)²/2+c12dy/[(
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).
方法一:∫1/(sinxcosx)dx=∫2/sin2xdx=∫csc2xd(2x)=ln|csc2x-cot2x|+C方法二:∫1/(sinxcosx)dx分子分母同除以cos²x=∫se
dydx要是等式才行吧.如果是的话,这句话就是求这个等式的根,用r表示x.
y=lntanxdy/dx=d(lntanx)/d(tanx)*d(tanx)/dx=1/tanx*sec²x=2csc(2x)d²y/dx²=2*dcsc(2x)/d(
因为d(lntanx)=1/tanx*sec^2(x)dx=dx/(sinxcosx)所以原式=∫lntanxd(lntanx)=(lntanx)^2/2+C
在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).