y^2dxdy的重积分,D是由x=π 4,x=π,y=0,y=cosx所围成的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:58:10
∫(D)∫ln(1+x^2+y^2)dxdyD:x^2+y^2=1与两坐标所围成的位于第一象限内的闭区ρ=1,θ从0,到π/2dS=ρdθdρ∫(D)∫ln(1+x^2+y^2)dxdy=∫[0,1]
答:∫(0到π/2)dθ∫(0到1)ln(1+r^2)rdr算不定积分∫rln(1+r^2)dr=∫1/2ln(1+r^2)d(1+r^2)=1/2∫ln(1+r^2)d(1+r^2)∫lnxdx=x
虽然积分区域是关于x轴对称的.但是被积函数(x+y)³却不是对称的.所以不能用对称性解吧~~假设有两个四面体,虽然它们的底都是同样的三角形,但是它们的高不一样,所以体积也未必一样.所以∫∫_
令u=x+y,v=x-y,则x=(u+v)/2,y=(u-v)/2∵x+y=1,x=0,y=0∴u=1,u+v=0,u-v=0∵D是由x+y=1,x=0,y=0所围成的区域∴经变换(u=x+y,v=x
第一题的积分区域没写清楚,无法做.第二题先画图,然后知道所求的结果可以写为:2*[∫(1-x*x/4)dx-∫(1-x*x)dx]前面定积分的下限是0,上限是2.后面的定积分的下限是0,上限是1.这样
y=x=>θ=π/4y=x^4=>rsinθ=(rcosθ)^4=>r^3=sinθ/(cosθ)^4=>r=[sinθ/(cosθ)^4]^(1/3)I=∫[0->π/4]∫[0->[sinθ/(c
看了你的题,我想,你可能题写地有错误,把加号都给省了,我按猜测的正确题目,试答如下:
令x=cosθ,y=sinθ由题,I=∫(-π/2,π/2)dθ∫(cosθ,1)r^2dr+∫(π/2,3π/2)dθ∫(0,1)r^2dr=(π/3-4/9)+π/3=2π/3-4/9没有公式编辑
∫∫xy²dxdy=∫dθ∫(rcosθ)*(rsinθ)²*rdr(应用极坐标变换)=∫(cosθsin²θ)dθ∫r^4dr=∫sin²θd(sinθ)∫r
∫∫_D√(y-x²)dxdy=∫(-1-->1)dx∫(0-->2)√(y-x²)dy=∫(-1-->1)dx∫(0-->2)√(y-x²)d(y-x²)=∫
先对x积分在对y积分∫∫e^(-y^2)dxdy=∫(0,1)[∫(0,y)e^(-y^2)dx]dy=∫(0,1)ye^(-y^2)dy=-1/2∫(0,1)e^(-y^2)d(-y^2)=-e(-
这道题用极坐标变换便不好做,因为积分范围真的是不好确定. 应该是用积分变化.令y=y,和z=y-x,这时有范围a再问:这个方法懂的。是正确答案,谢谢啦只是老师要求用极坐标做啊……再答:极坐标的不好写
令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限
∫dx∫dy/(x-y)²=∫[1/(x-4)-1/(x-3)]dx=[ln│x-4│-ln│x-3│]│=ln2-ln1-ln3+ln2=2ln2-ln3.
x=rcost,y=rsint,代入方程得r^2
=∫[0,2]dx∫[0,2-x](3x-2y)dy=∫[0,2][3x(2-x)-(2-x)^2]dx=∫[0,2][-x^2+10x-4]dx=32/3