z=cosx^2 y 求dz

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:16:15
z=cosx^2 y 求dz
用matlab解微分方程组:dy/dz – z =cosx,dz/dx + y =1 .

我来帮你回答这个问题:首先Dsolve求解常微分方程组时,各个微分的自变量是相同的;比如[x,y]=dsolve('Dx=y+x,Dy=2*x')中你的x,y都是默认为t的函数显然x,y函数的微分自变

1.x/z=e^y+z,求dz.

1,等式两边对x进行求导,然后分离出dz,结果为:(1+x/z^2)dz=(1/z)dx-e^ydy,然后再把dz前面的那块除到等式的右边就可以了.2,用极坐标求积分,就是画出积分区域,应该是位于第一

设z=z(x,y)是由方程e^(-xy)+2z-e^z=2确定 求dz|(x=2,y=-1/2)

对方程e^(-xy)+2z-e^z=2两边微分,有:e^(-xy)*d(-xy)+2*dz-e^z*dz=0-e^(-xy)*(x*dy+y*dx)+2*dz-e^z*dz=0移项,得:(e^z-2)

z=u^v,而u=x+2y,v=x-y,求dz/dx,dz/dy.各种求过程

dz/dx=dz/du*du/dx+dz/dv*dv/dx=vu^(v-1)+u^vlnu=(x-y)(x+2y)^(x-y-1)+(x+2y)^(x-y)ln(x+2y)dz/dy=dz/du*du

设有方程x+y^2+z^2=2z,求dz/dx dz/dy

两边同时微分:dx+2ydy+2zdz=2dzdz=1/(2-2z)dx+2y/(2-2z)dydz/dx=1/(2-2z)dz/dy=2y/(2-2z)注意:这是全微分求偏导数

设z=u^2cosv^2,u=x+y,v=xy,求dz/dx,dz/dy.

z=(x+y)^2*cos(x^2*y^2)dz/dx=2*(x+y)*cos(x^2*y^2)-2*(x+y)^2*sin(x^2*y^2)*x*y^2dz/dy=2*(x+y)*cos(x^2*y

设Z=f(xz,z/y)确定Z为x,y的函数求dz

f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(

若z=e^(x^2+y^3),求dz/dx,dz/dy

令u=x^2+y^3dz/dx=dz/duXdu/dx=e^uX2x=2xe^(x^2+y^3)dz/dy=dz/duXdu/dy=e^uX3y=3ye^(x^2+y^3)考查公式(e^x)'=e^x

z=f(x,2x+y,xy),f有一阶连续偏导数,求dz

再问:可以再帮我答题吗,我这边有很多财富值可以给你再问:

求由方程组x+y+z=0;x^2+y^2+z^2=1所确定的函数的倒数dx/dz,dy/dz

对两个式子各自求对x的导数,构成方程组,解dz/dx.对两个式子各自求对y的导数,构成方程组,解dz/dy.dx/dz=(dz/dx)^(-1),dy/dz=(dz/dy)^(-1)

微分方程(首次积分)已知dx/(e^x+z)=dy/(e^y+z)=dz/(z^2-e^(x+y)),求x,y,z的关系

由已知得dy/dx=(e^y+z)/(e^x+z),dz/dx=(z^2-e^(x+y))/(e^x+z),dz/dy=(z^2-e^(x+y))/(e^y+z),所以可以得到三式,e^ydx+zdx

设z=ln(x^z×y^x),求dz

z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz

设二元函数 z=u^2,u=x+y v=x-y ,求dz/dx,dz/dy

dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系

设x+y^2+z=ln(x+y^2+z)^1/2,求dz/dx

应该是∂z/∂x吧!令u=x+y^2+z=>du/dx=1+dz/dxu=lnu^(1/2)=1/2*lnudu/dx=1/2*1/u*du/dx=>du/dx=u/(1/2+

求函数Z=e^(2x+y^2)的全微分dz?

dz=2e^(2x+y^2)dx+2ye^(2x+y^2)dy把对x和对y的偏导分别求了出来再乘以各自的微分项即可.

设函数z=(x,y)由方程x^2+z^2=2ye^z所确定,求dz

两边求微分的2xdx+2zdz=2e^zdy+2ye^zdz解得dz=(2e^zdy-2xdx)/(2z-2ye^z)=(e^zdy-xdx)/(z-ye^z)

求函数:z^x=y^z的,dz/dx,dz/dy,

这类题目有两种方法,不过严格的说是一种方法,只是理解的方向不同.且说是两种方法吧.1、分别将式子对x,y求偏导数,然后整理式子就可可以得到答案了.z^x*ln(z)+x*z^(x-1)*z[x]=y^

设Z=f(x^2 +y,2xy),求dz/dx和dz/dy

u=x^2+y∂u/∂x=2x∂u/∂y=1du=(∂u/∂x)dx+(∂u/∂y)dy=2xdx+dy

z=(2y+7)^2 * ln(x^3+2) 求dz/dx 和 dz/dy

z=(2y+7)^2*ln(x^3+2)dz/dx=3x^2*(2y+7)^2/(x^3+2)dz/dy=2*(2y+7)*ln(x^3+2)