z=cosx² y的一阶偏导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:21:50
z=cosx² y的一阶偏导数
函数f有一阶偏导数,求它所有的偏导数.U=f(x-y,y-z,z-x)

U为一个三元函数,所以有三个一阶偏导(设f'1、f'2、f'3分别为f关于第一个、第二个、第三个自变量的一阶偏导)则U'x=f'1*1+f'2*0+f'3*(-1)=U'x=f'1f'3U'y=f'1

设函数z=z(x,y)是由方程F(x-z,y-z)所确定的隐函数,其中F(u,v)具有一阶连续偏导数,求z(下标x)+z

z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x

设z=f(x^2+y^2,xy),其中f具有一阶连续偏导数,求z的偏导数

令u=x^2+y^2,v=xy得∂z/∂x=(∂f/∂u)(∂u/∂x)+(∂f/∂v)(∂

求由方程e^z=xyz所确定的函数z=z(x,y)的一阶偏导数

对x求导,e^z*z'(x)=yz+xyz'(x),z'(x)=yz/(e^z-xy)对y求导,e^z*z'(y)=xz+xyz'(y),z'(y)=xz/(e^z-xy)

z=f(x,2x+y,xy),f有一阶连续偏导数,求dz

再问:可以再帮我答题吗,我这边有很多财富值可以给你再问:

6、设z=(x^2)*ln(2xy),求z对x的一阶,二阶偏导数,和z对y的一阶,二阶偏导数

z=(x^2)*ln(2xy),Zx=(2x)ln(2xy)+(x^2)/2xy*(2xy)'=(2x)ln(2xy)+xZxx=2ln(2xy)+(2x)/2xy*(2xy)'+1=2ln(2xy)

设函数z=f(xy,e^x+y),其中f.,求一阶偏导数?

令u=xy,v=e^(x+y)Z'x=Z'u*U'x+Z'v*V'x=f'u*y+f'v*e^(x+y)Z'y=Z'u*U'y+Z'v*V'y=f'u*x+f'v*e^(x+y)

求一阶偏导数:z=arctan√(x^y )

z'(x)=1/[1+(x^y)]*1/2√(x^y)*yx^(y-1)=yx^(y-1)/{2√(x^y)[1+(x^y)]}z'(y)=1/[1+(x^y)]*1/2√(x^y)*lnx*x^y=

设z=f(xlny,x-y)且f存在连续一阶偏导求z的全部偏导数

z=f(xlny,x-y)əz/əx=lnyf1′+f2′əz/əy=(x/y)f1′-f2′再问:�жϼ����(n��1����)(-1)^n/���(n(

求方程x/z=lnz/y所确定的隐函数z=z(x,y)的一阶偏导数

x/z=lnz/y=lnz-lnyx=zlnz-zlnyF(x,y,z)=x-zlnz-zlnyFx=1Fy=-z/yFz=-lnz-1-lny所以az/ax=-Fx/Fz=-1/(-lnz-1-ln

大一的微积分~求μ=f(x,xy,xyz),z=φ(x,y)的一阶偏导数

f1表示f对第1个变量求导数,其余类推.∂μ/∂x=f1+f2(y)+f3(yz+xy∂φ/∂x)=f1+yf2+y(z+x∂φ/ͦ

z=ln(tanx/y)的一阶偏导数

(1)z=ln(tanx/y)dz/dx=1/(tanx/y)*(sec²x/y)=sec²x/tanxdz/dy=1/(tanx/y)*(-tanx/y²)=-1/y(

求z=根号下x/y的一阶偏导数

(注:偏导数的符号姑且用"d"表示)dz/dx=1/{y[2(x/y)^0.5]}(算z对x的偏导数时,把y看成是一个常数即可)dz/dy=-x/{y^2*[2(x/y)^0.5]}(算z对y的偏导数