z=xe^-xy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:53:46
y'+2xy=xe^(-x^2)e^(x^2)(y'+2xy)=x(ye^(x^2))'=x两边积分:ye^(x^2)=x^2/2+Cy=x^2e^(-x^2)/2+Ce^(-x^2)
易知z0)Fz(z)=∫[0->+∞]dx∫[0->z/x]xe^(-x(1+y))dy=∫[0->+∞]xe^(-x)-xe^(-(z+x))dx=-xe^(-x)|[0->+∞]-∫[0->+∞]
可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就
这个是非齐次的一阶线性微分方程首先求它对应的齐次线性方程的y'-2xy=0,dy/dx=2xy,dy/y=2xdx,∫dy/y=∫2xdx,lny+C1=x²+C2,y=Ce^(x²
将原方程两边微分得d[xe^y+sin(xy)]=0→e^ydx+xe^ydy+cos(xy)(ydx+xdy)=0→移项[xe^y+xcos(xy)]dy=-[e^y+ycos(xy)]dx整理→d
dz=d(xyln(xy))=xyd(ln(xy))+ln(xy)d(xy)=xyd(xy)/(xy)+ln(xy)d(xy)=d(xy)+ln(xy)d(xy)=(1+ln(xy))d(xy)=(1
y+xdy/dx-e^(y^2)-2xe^(y^2)dy/dx-1=0x=1,y=0dy/dx-1-2dy/dx-1=0dy/dx=-2
∂Z/∂x=y*cos(xy)-2cos(xy)*sin(xy)*y=y*cos(xy)-y*sin(2xy)∂Z/∂y=x*cos(xy)-2cos(
两种画法1ContourPlot3D函数,画等值面ContourPlot3D[x*y-z==0,{x,-2,2},{y,-2,2},{z,-4,4}]2Plot3D函数,直接画,但是要用点技巧,注意如
令x=根号2分之1(x‘-y’)y=根号2分之1(x'+y')z=xy=1/2(x'^2-y'^2)双曲抛物面
1.先解齐线性方程xy'+(1-x)y=0的通解,得到y=ce^(x-lnx),(c为任意常数)……①其次利用常数变易法求非齐线性方程xy'+(1-x)y=e^2x的通解,把c看成是c(x),微分①后
z=xy的图形,应该是一种马鞍面.再问:嗯,能说的具体点吗再答:一种马鞍面
假设(+,+,+)为第一卦限,(-,-,-)为第八卦限.则z=xy经过第一、三、五、七卦限.不是马鞍面.这个面在一个卦限里的形状像一条边被掀起的布帐,举个例子,依y轴(切片)看去,接近x-z基准面处,
1、z=xe^(-xy)dz/dx=e^(-xy)-xye^(-xy)dz/dy=-x^2*e^(-xy)2、f(x,y)=(1+xy)^y令u=1+xy,v=y,则f=u^v由复合函数求导法则df/
x=-2:0.1:2;y=x;[x,y]=meshgrid(x,y);z=x.*y;surf(x,y,z);grid on;xlabel('x.axis');ylabel(&
xy'+y=-xe^x(xy)'=-xe^x两边积分:xy=-∫xe^xdx=-xe^x+∫e^xdx=-xe^x+e^x+C令x=1:0=-e+e+C,C=0所以xy=-xe^x+e^x显然x≠0所
z=xy的图形是双曲抛物面,只要在曲面z=x^2-y^2的图形中将x轴和y轴水平顺时针旋转45°即可得到z=xy的图形再问:好厉害!!再问:这个图是你自己画的吗?用什么软件画的?再答:用CAD就可以画
这道题还是很普通的对x求偏导时应该把y当做常数来对待这样的话里相当于只有对x的函数求导,同理可求y的求导,z=(1+xy)^2z'=2(1+xy)*(1+xy)'=2(1+xy)*(x'y+xy')d