{nμn}收敛,Σn(μn-μn-1)收敛,证明Σμn收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:02:16
{nμn}收敛,Σn(μn-μn-1)收敛,证明Σμn收敛
级数(1/b)^n收敛,a>b>0,证明级数1/(a^n-b^n)收敛

俺来回答一下,马上拍照再答:

n

mile意思是英里.1mile=5280英尺=63360英寸=1609.344米所以nmile=1609.344×n(m)10nmile=16093.44m

证明级数收敛 Un=n/((ln n)^n)

你好!lim(n→+∞)Un^(1/n)=lim(n→+∞)n^(1/n)/lnn=lim(n→+∞)1/lnn=0所以原级数收敛

利用级数收敛的必要条件证明 lim n-> 无限 n^n/(n!)^2=0

limn->无限n^n/(n!)^2=limn->无限Π(i=1→n)[n/(i²)]=limn->无限e^ln[Π(i=1→n)n/(i²)]=limn->无限e^Σ(i=1→n

级数(-1)^n / n 为啥收敛 ?怎么证明?

交错级数,用莱布尼兹判敛法再问:莱布尼茨的的前提条件之一不是前项大于后项吗这里怎么满足。。。求教再答:那里面所说的是把(-1)^n去掉之后剩下的正项,在这里就是1/n

如何证明级数n^n/(n!)^2是收敛的

只需要求后一项与前一项的比值:为(n+1)^(n+1)*(n!)^2/[n^n*(n+1!)^2]=(n+1)^(n-1)/n^n=【(n+1)/n】^n*【1/(n+1)】lim【(n+1)/n】^

证明级数(-1)^n/n是收敛的

设部分和数列为Sn则S[2k]=Σ-1/[(2k)(2k-1)]收敛S[2k-1]=S[2k]-(-1)^n/n收敛从而Sn的奇数子列和偶数子列收敛到同一个值所以Sn收敛即原级数收敛

求级数 ∑(x-3)^n / n-n^3 的收敛半径和收敛域!

令t=x-3,级数变为∑t^n/(n-n^3),ρ=lim(n→∞)|a(n+1)/an|=lim(n→∞)|n(1-n^2)/(n+1)((n+1)^2-1)|=lim(n→∞)n/(n+2)=1,

判断幂级数无穷∑n=1 【((-3)^n+5^n)/n】*X^n的收敛半径和收敛区域

设an=【((-3)^n+5^n)/n】则收敛半径=an/an+1=1/5x=1/5同1/n比较发散x=-1/5莱布尼茨判别发收敛

利用级数收敛的必要条件证明lim n→∞ n^n/(n!)^2=0

考虑级数n^n/(n!)^2后项比前项=[(n+1)^(n+1)/(n+1)!^2]/[n^n/(n!)^2]=[(1+1/n)^n]/(1+n)趋于0

如何证明 ln n/n^(4/3)级数收敛

考虑级数1/n^(7/6),该级数收敛由于lim[lnn/n^(4/3)]/(1/n^(7/6)]=lim[lnn/n^(1/6)]=lim6/n^(1/6)=0

求幂级数∑(n=1,∞) x^n/n·3^n的收敛域

已经做过:lim(1/[(n+1)3^(n+1)]/(1/n·3^n)=1/3,故收敛半径为3当x=3时,为调和级数,发散当x=-3时.为收敛的交错级数收敛域为[-3,3)

ln(n)/n^2 级数和是否收敛?

楼上的是不是胡说.1/n根本不收敛.这个级数是收敛的.n充分大时,ln(n)

用收敛的必要条件证明lim(n->∞) (2^n)*(n!)/(n^n)=0

用后项比前项:因{2^(n+1)(n+1)!/(n+1)^(n+1)}/{2^n(n)!/(n)^n=2/(1+1/n)^n趋于2/e

证明(n+3)/n^3级数收敛

级数1/(n^2)是收敛的而(n+3)/(n^3)=n/(n^3)+3/(n^3)=1/(n^2)+3/(n^3)把上面级数分成两项:1/(n^2)和3/(n^3),那么1/(n^2)是收敛的,而3/

n→∞函数sin(nπ)收敛吗 数列sin(nπ)收敛吗

数列收敛,极限为0函数不收敛