²z ∂x∂y = -2ysinx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:46:39
(y-z)^2+(z-x)^2+(x-y)^2=(x+y-2z)^2+(y+z-2x)^2+(z+x-2y)^2[(y-z)^2-(y+z-2x)^2]+[(z-x)^2-(x+z-2y)^2]+[(
1/x=p1/y=q1/z=rpq+qr+pr=1(y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1/y+1/z)^2为(pq+qr+pr)[r/p+r/q+q/r+q/p+p/r+p/q
(一题)从这步d(ysinx)-dcos(x-y)=0到这步sinxdy+ycosxdx+sin(x-y)(dx-dy)=0不懂是么?ysinx是两个数相乘,对它d(ysinx)时就得用公式d(UV)
有这样的公式:a^3+b^3+c^2-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)左边减右边,证明:(x+y-2z)^3+(y+z-2x)^3+(z+x-2y)^3-3(x+y
两边关于x求一阶导y'*e^(x+y)-y'sinx-ycosx=0y'=ycosx/(e^(x+y)-sinx)
再答:是(x+y)^2还是x+y^2再问:是前者再问:第一道题你算错了吧。再答:为啥。。。。再问:再问:这个是答案。再答:第二个你把分子分母倒一下。。。。我看看。。?再问:??再问:再问:第二道题再答
设y=y(x)由方程ysinx=cos(x-y)所确定,则y'(0)=x=0时cos(-y)=cosy=0,故y=π/2+2kπ,k∈ZF(x,y)=ysinx-cos(x-y)=0dy/dx=-(&
参考答案:停车坐爱枫林晚,霜叶红于二月花.
设a=x-y,b=y-z,-a-b=z-x(y-z)平方+(x-y)平方+(z-x)平方=(y+z-2x)平方+(z+x-2y)平方+(x+y-2z)平方b^2+a^2+(-a-b)^2=(-a-b-
两边对x求导:dy/dxsinx+ycosx-sin(x-y)(1-dy/dx)=0,将x=π/2带入已知方程得到y,再把x、y带入上式求得结果再问:x=π/2带入已知方程得到y。。。我算不出这个y
这就是应用隐函数的求导.将x=0代入方程,得lny^2=0,得y=±1两边对x求导,得:(2x+2yy')/(x^2+y^2)=y'sinx+ycosx+1代入x=0,y=1到上式,得2y'=2,得y
ysinx-cos(x+y)=0,两边对x求导,得y'sinx+ycosx+(1+y')sin(x+y)=0,解得y'=-[ycosx+sin(x+y)]/[sinx+sin(x+y)]dy/dx=y
应用复合函数求导方法,y′sinx+ycosx+(1+y′)sin(x+y)=0,(sinx+sin(x+y))y′+ycosx+sin(x+y)=0,y′=-(ycosx+sin(x+y))/(si
两边对x求导y'*sinx+ycosx-[-sin(x+y)*(1+y')]=0y'(sinx+sin(x+y))=y(1-cosx)y'=[1-cosx]/[sinx+sin(x+y)]0/0所以需
=x²(y-z)+y²(z-x)+z²(x-z+z-y)=(y-z)(x²-z²)+(z-x)(y²-z²)=(y-z)(x-z)
设x/2=y/3=z/5=ax=2ay=3az=5a是不是求的是:(x+3y-z)/(x-3y+z)?若是,如下:(x+3y-z)/(x-3y+z)=(2a+9a-5a)/(2a-9a+5a)=-3
根据公式(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac公式展开:得到(x^2+y^2+z^2=2xy-2yz-2xz)-(x^2+y^2+z^2-2xy-2yz+2xz)合并同类项
两边求导:y'sinx+ycosx+sin(x+y)*(1+y')=0令x=0,y=π/2:π/2+1+y'=0y'=-(π/2+1)dy=-(π/2+1)dx