ρ=a(1-cosψ)图形面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:44:08
如图所示圆弧r=1以外而圆弧r=2cosθ以内的图形的面积等于1.23
心形p=a(1+cosθ)(a>0)所围成的图形对称于极轴,所求的面积是极轴以上部分面积A的两倍对于极轴以上部分的图形,θ的变化区间是[0,Pai],相应于[0,派]上任一小区间[θ,θ+dθ]的窄曲
马小跳童鞋,我来了,看好了 再问:���֪��ͼ���ǻ����ó��
等式第一项是极坐标通用求面积公式再问:答案是1/3π+2-√3啊再答:它的图像应该是一个哑铃。最远处极半径是√2.,最近处是0.怎么会是r=1以内的呢。。。好像不能围成图形啊日。我画错图了。稍等哦
心形曲线r=a(1+cosb)形状是绕了一圈他的定义域是[0,2π]但是他关于x轴对称我们求面积的话,只要求上半部分就好了因为下面的面积和上面一样所以我们只做[0,π]上的面积,再前面乘以那个2就行了
心形曲线r=a(1+cosb)形状是绕了一圈他的定义域是[0,2π]但是他关于x轴对称我们求面积的话,只要求上半部分就好了因为下面的面积和上面一样所以我们只做[0,π]上的面积,再前面乘以那个2就行了
用极坐标系下求面积的方法,定积分应用中有相关的公式,套公式即可,也可用极坐标的二重积分(3πa^2)/2
【参考答案】r=1+cosθ,r'=-sinθ利用对称性长度=2∫(0,π)√r^2+r'^2dθ=2∫(0,π)√(2+2cosθ)dθ=2∫(0,π)√4cos^2(θ/2)dθ=4∫(0,π)c
这种积分题还是比较麻烦的,真想用matlab给你做.这是个“鸡蛋图”只求y大于0部分的面积,记为s1极坐标化为参数方程:x=2a(2+cost)cost,y=2a(2+cost)sints1=int(
三条直线θ=0,θ=π3,ρcosθ+ρsinθ=1的直角坐标方程分别为:y=0,y=3x,x+y=1,所以它们的交点坐标分别为O(0,0),A(1,0),B(3−12,3−32),OB=(3−12)
这是一组极坐标方程.r=3cosθ是以(1.5,0)为圆心,3为直径的圆;r=1+cosθ是帕斯卡蜗线的一种;r=√2sinθ是以(0,√2/2)为圆心,√2为直径的圆;r^2=cos2θ是双纽线的一
S=∫ydx=∫a(1-cost)d(a(t-sint))=a^2∫(1-cost)^2dt希望采纳
将极坐标转换成直角坐标后就很容易知道这是两条怎样的曲线.转换公式是: r=√(x²+y²), cosθ =x/√(x²
只要考虑|AP|最长与最短时所在线段扫过的面积即可.设P(1+cosθ,θ),则|AP|2=22+(1+cosθ)2-2•2(1+cosθ)cosθ=-3cos2θ-2cosθ+5=-3(cosθ+1
联立两个方程r=3cosθr=1+cosθ当两个相等时,3cosθ=1+cosθ即2cosθ=1,θ=π/3和-π/3先对心形线在-π/3到π/3的面积求出来,因为上下对称,所以面积是上面一块的两倍S
再答:��ʮ���ѧ���飬רҵֵ��������������Ͽ��ҵĻش
3/2乘π乘a^2用极坐标来做再问:求具体过程再答:关于极轴对称那么整个面积S=2s1=2X积分号(下线0)(上限π)『1/2乘[a(1+cosθ)]^2dθ』很简单的积分自己脱了括号算下就出来了再问
n乘以右边等式2pai积分就对了