ρ=a(1-cosψ)图形面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:44:08
ρ=a(1-cosψ)图形面积
圆弧 r=1 以外而圆弧 r=2cos θ以内的图形的面积等于多少?

如图所示圆弧r=1以外而圆弧r=2cosθ以内的图形的面积等于1.23

心形p=a(1+cosθ)(a>0)所围成的图形的面积应该怎么求呢?谢谢!

心形p=a(1+cosθ)(a>0)所围成的图形对称于极轴,所求的面积是极轴以上部分面积A的两倍对于极轴以上部分的图形,θ的变化区间是[0,Pai],相应于[0,派]上任一小区间[θ,θ+dθ]的窄曲

大一高数定积分求面积 求由两曲线r=3cosθ与r=1+cosθ所围成公共部分的图形的面积?

马小跳童鞋,我来了,看好了           再问:���֪��ͼ���ǻ����ó��

高数.定积分.求由r^2=2cosθ所围成图形在 r=1内的面积.求详解,

等式第一项是极坐标通用求面积公式再问:答案是1/3π+2-√3啊再答:它的图像应该是一个哑铃。最远处极半径是√2.,最近处是0.怎么会是r=1以内的呢。。。好像不能围成图形啊日。我画错图了。稍等哦

定积分的应用 求心形线r=a(1+cosθ)(a>0)所围成的图形面积

心形曲线r=a(1+cosb)形状是绕了一圈他的定义域是[0,2π]但是他关于x轴对称我们求面积的话,只要求上半部分就好了因为下面的面积和上面一样所以我们只做[0,π]上的面积,再前面乘以那个2就行了

计算心形线r=a(1+cosθ)与圆r=a所围图形面积

心形曲线r=a(1+cosb)形状是绕了一圈他的定义域是[0,2π]但是他关于x轴对称我们求面积的话,只要求上半部分就好了因为下面的面积和上面一样所以我们只做[0,π]上的面积,再前面乘以那个2就行了

求心形线ρ=a(1-cosθ)(a>0)所围成的图形面积

用极坐标系下求面积的方法,定积分应用中有相关的公式,套公式即可,也可用极坐标的二重积分(3πa^2)/2

设心脏线方程为r=1+cosθ,求心脏线围成图形面积,求心脏线的长度

【参考答案】r=1+cosθ,r'=-sinθ利用对称性长度=2∫(0,π)√r^2+r'^2dθ=2∫(0,π)√(2+2cosθ)dθ=2∫(0,π)√4cos^2(θ/2)dθ=4∫(0,π)c

求曲线r=2a(2+cosθ )围成的平面图形的面积

这种积分题还是比较麻烦的,真想用matlab给你做.这是个“鸡蛋图”只求y大于0部分的面积,记为s1极坐标化为参数方程:x=2a(2+cost)cost,y=2a(2+cost)sints1=int(

(2009•上海)在极坐标系中,由三条直线θ=0,θ=π3,ρcosθ+ρsinθ=1围成图形的面积等于3−343−34

三条直线θ=0,θ=π3,ρcosθ+ρsinθ=1的直角坐标方程分别为:y=0,y=3x,x+y=1,所以它们的交点坐标分别为O(0,0),A(1,0),B(3−12,3−32),OB=(3−12)

r=3cosθ与r=1+cosθ围成图形的公共部分面积还有r=√2sinθ与r^2=cos2θ的公共部分面积

这是一组极坐标方程.r=3cosθ是以(1.5,0)为圆心,3为直径的圆;r=1+cosθ是帕斯卡蜗线的一种;r=√2sinθ是以(0,√2/2)为圆心,√2为直径的圆;r^2=cos2θ是双纽线的一

求由摆线x=a(t-sin t),y=a(1-cos t)及x轴所围成的图形的面积(0

S=∫ydx=∫a(1-cost)d(a(t-sint))=a^2∫(1-cost)^2dt希望采纳

求极坐标面积求曲线r=acosθ与r=a(cosθ +sinθ )所围图形公共部分的面积(a>0)不光要求答案要求给出解

将极坐标转换成直角坐标后就很容易知道这是两条怎样的曲线.转换公式是: r=√(x²+y²), cosθ =x/√(x&sup2

曲线C的极坐标方程是ρ=1+cosθ,点A的极坐标是(2,0),曲线C在它所在的平面内绕A旋转一周,则它扫过的图形的面积

只要考虑|AP|最长与最短时所在线段扫过的面积即可.设P(1+cosθ,θ),则|AP|2=22+(1+cosθ)2-2•2(1+cosθ)cosθ=-3cos2θ-2cosθ+5=-3(cosθ+1

求由圆r=3cosθ与心形线r=1+cosθ所围成图形的面积 请附图说明

联立两个方程r=3cosθr=1+cosθ当两个相等时,3cosθ=1+cosθ即2cosθ=1,θ=π/3和-π/3先对心形线在-π/3到π/3的面积求出来,因为上下对称,所以面积是上面一块的两倍S

求r=2a(1-cosθ)所围成图形的面积

再答:��ʮ���ѧ���飬רҵֵ��������������Ͽ��ҵĻش

求心形曲线r=a(1+cosθ)(a>0)所围成的面积

3/2乘π乘a^2用极坐标来做再问:求具体过程再答:关于极轴对称那么整个面积S=2s1=2X积分号(下线0)(上限π)『1/2乘[a(1+cosθ)]^2dθ』很简单的积分自己脱了括号算下就出来了再问

ρ=2a*cosθ 求这个曲线围成的图形面积.

n乘以右边等式2pai积分就对了