∑(an)^²,∑(bn)^²收敛,分别证明∑ anbn ∑anbn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:42:08
an,(bn)^2,a(n+1)成等差数列2(bn)^2=an+a(n+1)--①由(bn)^2,a(n+1),(b(n+1))^2成等比数列(a(n+1))^2=[bnb(n+1)]^2∴a(n+1
用比较判别法证明.经济数学团队帮你解答.请及时评价.
(an+bn)^2
算术几何均值不等式:|an|/n
设M为{bn}的上界则|bn|
∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛
am+an+bm+bn=a(m+n)+b(m+n)=(m+n)(a+b)xy-xz+y-z=x(y-z)+y-z=(y-z)(x+1)a^2+ab+ac+bc=a(a+b)+c(a+b)=(a+b)(
不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn
在n大于等于3时,这个行列式为0,可用性质化简计算.经济数学团队帮你解答,请及时评价.再答:请用追问方式提问,否则我无法在网页端回答。不同的问题最好另开新提问。
这个不一定的:比如Bn=-An,显然{An+Bn}收敛到0比如An={1,0,1,0,……},Bn={0,1,0,1……}显然{AnBn}收敛到0
A和D都有可能,但是排除B和C因为按照复变函数里有关内容,结果是大于或等于两个收敛半径中较小的一个.
An,Bn,An+1成等差A1=1.B1=2所以A2=3又Bn,An+1,Bn+1成等比所以B2=9/2所以A3=6,B3=8A4=10,B4=25/2所以,An=n(n-1)/2,Bn=(n+1)^
an,bn,an+1成等差数列2bn=an+a(n+1)bn,an+1,bn+1成等比数列[a(n+1)]^2=bn*b(n+1)根据上述2式得2bn=根号(b(n-1)*bn)+根号(bnb(n+1
原式=m(a+b)+n(a+b)=(a+b)(m+n)
由于有0
根据数列求和公式Sn=(a1+an)*n/2An/Bn=[(a1+an)*n/2]/[(b1+bn)*n/2]=(a1+an)/(b1+bn)由等差数列有a1+an=2*a[(1+n)/2]这里方括号
a(n+1)+b(n+1)=1,b(n+1)=(1-an)/(1-an²)=1/(1+an),a(n+1)+1/(1+an)=1,a(n+1)an+a(n+1)+1=1+an,a(n+1)a
第一题有不错的解答了...主要写了你补充的题
分子分母同时乘以1/an