∑ln(n 1) n收敛性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:46:41
∑ln(n 1) n收敛性
∑(2^n-1)/3^n判断级数收敛性

收敛.∑2^n/3^n是公比为2/3的等比级数,收敛.∑1/3^n是公比为1/3的等比级数,收敛.所以,原级数收敛.

[1,∞)内级数∑ /2^n+1的收敛性

这个是正项级数,用比值判别法进行判断lim|u(n+1)/un|=|[(n+1)!/2^(n+2)]/[n!/2^(n+1)]|=lim[(n+1)/2]=∞>1∴级数发散

高数 判定级数收敛性∑(n=1到无穷)ln(n/(n+1))

级数通项un=ln(n/(n+1))lim(n→无穷)un=lim(n→无穷)ln(n/(n+1))=lim(n→无穷)ln(1/(1+1/n))=0因为sn=ln(1/(n+1))所以S=lim(n

无穷级数收敛性 ∑ln(n)∕n(5/4) 意义:n的对数与n的5/4次方.n∈[1,∞]比较法,除以n的6/5次方,然

比较审敛法的极限形式判断正向级数级数是收敛还是发散,发散的情况下极限的比值需满足极限的比值大于零或趋于正无穷

判断级数收敛性 1-ln2+1/2-ln3/2+… +1/n-ln((n+1)/n)+…答案是条件

拆项的时候不能随意组合.比如∑(-1)^n这个级数显然不是收敛的,但是∑(-1+1)是收敛的.下面为具体解析过程:

判断级数的收敛性判断级数∑1/n^+a^收敛性?

这个是收敛的,1/n^+a^<1/n²<1/n(n-1)=1/(n-1)-1/n,n≥2,所以0<∑1/n^+a^<1/(1+a^)+1-1/n,当n趋于无穷,有0<∑1/n^+a^<1/(

用比较法判断级数的收敛性(∞∑n=1)1/ln(n+1)

跟1/n的求和去比较吧.1/3+1/4+...1/n...发散,所以1/ln3+1/ln4...+1/ln(n).发散,因为后者每项都大于前者

求判断无穷级数收敛性怎么做 ∑ ln(n+1) / n+1

发散啊,对于n>N设N>e-1,有ln(n+1)>1,所以ln(n+1)/n+1>1/n+1,而1/n+1的级数是发散的所以∑ln(n+1)/n+1发散部分和发散,必发散

求级数∑n^2的收敛性 n:∞

啊?这个问题?一般项n^2不趋于0,级数发散

判断级数ln(n+1分之n)的收敛性

利用定义∑ln[n/(n+1)]=∑[lnn-ln(n+1)]=(ln1-ln2)+(ln2-ln3)+(ln3-ln4)+···+[lnn-ln(n+1)]+···当n→+∞时,部分和Sn=(ln1

级数ln n/n^2的收敛性

∵limn->∞时,lnn/n²~1/2n²∵1/n²收敛∴lnn/n²收敛

判断正项级数的收敛性ln(1+n)/(n^2)

ln(1+n)/(n^2)和1/n^(3/2)比较[ln(1+n)/(n^2)]/[1/n^(3/2)]=ln(1+n)/(n^(1/2))ln(1+n)/(n^(1/2))求导得2(√n)/(1+n

(n*ln n)/2^n 这个级数的收敛性怎么判断?

(n*lnn)/2^n这个级数除了n=1时数项为0,其余的的各项都是正的.在这种情况下我们将∑(n*lnn)/2^n(n属于N)分解成:0+∑(n*lnn)/2^n(n是除1外的自然数).我们只需讨论

讨论级数∑1/(ln(n)^n)的收敛性

因为1/(ln(n)^n)开n次方=1/(ln(n))它的极限=0再问:他是要求讨论的,应该分情况啊再答:不需要,除非你字母搞错乱了。

判别级数收敛性比较审敛法:∑(∞ n=1) (ln n)/n^(4/3)那(ln n)/n^(1/6)的极限为什么是0?

收敛,用P判别法(也就是比较审敛法)可以有(lnn)/n^(4/3)*n^(7/6)=(lnn)/n^(1/6)极限是0所以原级数收敛其实lnn^εε→0+那(lnn)/n^(1/6)的极限为什么是0

判断级数∑(n=2→∞)1/[ln(n)]^10的收敛性

判断∑an是否收敛,你这算的是an随n变化,有很多an虽然收敛,但是∑an却能趋于∞.比如∑(1/n),1/n减小的很快,但是∑(1/n)却是等于无穷的.

求级数收敛性问题级数 为An=Ln(1+1/n)的求和,n是1到正无穷 ,判断这个级数的收敛性

因为lim(n-->∞)ln(1+1/n)/(1/n)=1也就是这个级数与1/n等价所以是发散的或者根据对任意的nln(1+1/n)>1/n+1以及级数∑1/n+1发散来判断这个级数发散

判断级数∑〔(-1)^n 〕(ln n)/√n 的条件收敛性,其中n是从1到∞的

由于级数∑lnn/√n不收敛,所以原级数不绝对收敛.当n≥8时,ln(n+1)/√(n+1)<lnn/√n,又因为lim(n→∞)lnn/√n=0,因此去掉原级数的前7项后,所得的级数是收敛的(根据莱

判断级数∑(∞,n=2)1/ln^10n的收敛性

发散;因为:lim[1/ln^10n]/[1/n]=limn/[ln^10n]=limx/[ln^10x]=lim1/[(10ln^9x)*1/x]=limx/[(10ln^9x)]=……=+∞而∑1