√9-x^2 x的不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:41:35
再答:再答:再问:答案是这个
答:1.∫arcsinxdx可用分部积分原式=xarcsinx-∫x/√(1-x^2)dx=xarcsinx+√(1-x^2)+C2.∫e^(√x+1)dx换元,令√(x+1)=t,则x=t^2-1,
用分部积分,设u=arctanx,v'=1/x^2u'=1/(1+x^2),v=-1/x,原式=-(arctanx)/x+∫dx/[x(1+x^2)]=-(arctanx)/x+∫(-x)dx/(1+
令t=√(x^2-9),t^2=x^2-9,2tdt=2xdxtdt=xdx积分号下:√(x^2-9)dx/x=√(x^2-9)xdx/x^2(分子分母同乘以x)=t*tdt/(t^2+9)=t^2d
∫(ln√x)^2dx=x(ln√x)^2-∫xd(ln√x)^2=x(ln√x)^2-∫x*2ln√x*1/(2x)dx=x(ln√x)^2-∫ln√xdx=x(ln√x)^2-x∫ln√x+∫xd
我的解答如下:换元法令x=3/2sint,t∈[-0.5π,0.5π]dx=3/2cost带入后得到∫(1-x)/[√(9-4x^2)]dx=∫(1-1.5sint)1.5costdt/3cost=∫
=1/2·∫lnx/xdx=1/2·∫lnxdlnx=1/4·(lnx)^2+C
∫x^2/√(1-x^2)dx=-∫-2x^2/2√(1-x^2)dx=-∫xd√(1-x^2)=-x√(1-x^2)+∫√(1-x^2)dx其中,解∫√(1-x^2)dx令x=sintdx=cost
用两次分部积分法就可以了,答案就是1/2*x^2*{(lnx)^2-lnx-1/2}+C再问:能不能给出详细解答,谢谢再答:我现在没空了啊,总之这个答案是对的
∫x/(sinx)^2dx=-∫xdcotx=-xcotx+∫cotxdx=-xcotx+ln|sinx|+C满意请好评o(∩_∩)o
=1/3∫lnxd(x^3)=1/3(x^3lnx-∫x^2dx)=1/3(x^3lnx-1/3x^3)=1/3x^3lnx-1/9x^3+c
1/(1+x^2)d(1+x^2)=ln(1+x^2)+C
原式=-∫xdcotx=-xcotx+∫cotxdx=-xcotx+ln|sinx|+c注意一定要加绝对值刚翻了翻课本
∫[(x-1)/(x^2+3)]dx=∫[x/(x^2+3)]dx-∫[1/(x^2+3)]dx=(1/2)∫[1/(x^2+3)]d(x^2+3)-(1/√3)∫{1/[(x/√3)^2+1]}d(
=∫(x^2-4x+4)*x^(-1/2)dx=∫[x^(3/2)-4x^(1/2)+4x^(-1/2)]dx=2x^(5/2)/5-8x^(3/2)/3+8x^(1/2)+C=2x^2√x-8x√x
分部积分,结果=X^ 3 ·arctanX/3-X^2/6+In|1+X^2|/6+C,发张图给你看下我的解题过程
令x=3sint,则dx=3costdt.t=arcsin(x/3).sin2t=2sintcost∫√(9-x^2)dx=∫[√(9-9sin²t)]3(cost)dt=∫9cos