∫(sinx*cosx) (sinx cosx)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:42:21
∫cosx/(sinx+cosx)dx=(1/2)∫[(cosx+sinx)+(cosx-sinx)]/(sinx+cos)]dx=(1/2)∫dx+(1/2)∫(cosx-sinx)/(sinx+c
∫(sinx)^3/(cosx)dx=-∫(sinx)^2/(cosx)dcosx=-∫(1-cos^2x)/(cosx)dcosx=-∫(1/cosx-cosx)dcosx=-lncosx+1/2c
a.b=(sinx-cosx)(sinx+cosx)+2cosxsinx=sin2x-cos2x=3/5=>(sin2x-cos2x)^2=9/251-2sin2xcos2x=9/25sin4x=16
原式=∫(sin²x+cos²x+2sinxcosx)dx=∫(1+sin2x)dx=1/2∫(1+sin2x)d2x=x-cos2x+C
∫sinx+cosx/(sinx-cosx)^1/3dx=∫(sinx-cosx)^(-1/3)d(sinx-cosx)=1/(2/3)*(sinx-cosx)^(2/3)+C=3(sinx-cosx
1.令u=x-∏/2,代入,积分上下限会颠倒,但dx产生中的负号正好可以抵消,于是得证2.令x=a*sint,随后对关于t的函数定积分,就可以用上面结论了
设t=³√(sinx-cosx)sinx-cosx=t³(sinx+cosx)dx=3t²dt代入易得结果为3/2t²+c回代即可得解
设t=tanx,则x=arctant,dx=dt/(1+t²),sec²x=1+t²故∫sin²x/(1+cos²x)dx=∫tan²x/(
原式=∫(sinx-cosx)^1/3d(sinx-cosx)
被积函数的分母:sinx+cosx对分母进行微分:d(sinx+cosx)=(cosx-sinx)dx被积函数的分子:sinx-cosx被积函数的分子的微分形式:(sinx-cosx)dx=d(-co
∫(cosx/e^sinx)dx=∫(1/e^sinx)dsinx=-∫e^(-sinx)d(-sinx)=-e^(-sinx)
令cosx=a(cosx+sinx)+b(cosx+sinx)'=(a+b)cosx+(a-b)sinx===>a=b=1/2∫cosx/(cosx+sinx)dx=(1/2)∫[(cosx+sinx
令cosx+2sinx=A(sinx+2cosx)+B(cosx-2sinx)cosx+2sinx=(2A+B)cosx+(A-2B)sinx2A+B=1A-2B=2=>A=4/5,B=-3/5cos
∫dx/(sinx+cosx)=∫(cscx+secx)dx=In|secx+tanx|+In|cscx-cotx|+c26)∫secxdx=In|secx+tanx|+c 27)∫cscxdx=I
设t=tan(x/2),则x=2arctant,sinx=2t/(1+t²),cosx=(1-t²)/(1+t²),dx=2dt/(1+t²)故∫dx/(1+s
∫(sinx-cosx)dx=-cosx-sinx+C直接套公式
答:∫[cosx/(1+sinx)]dx=∫[1/(1+sinx)]d(1+sinx)=ln|1+sinx|+C
不好意思我学的不好看不懂题
2(cosx)^2-1=cos(2x)=(cosx)^2-(sinx)^2cos(x)^2=[cos(2x)+1]/2∫(cosx)^2/(cosx-sinx)dx=∫[cos(2x)+1]/[2(c