∫-ydx xdy,l为经曲线y=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:44:17
∫-ydx xdy,l为经曲线y=
计算曲线积分I=∫(e^y+x)dx+(xe^y-2y)dy,L为从(0,0)到(1,2)的圆弧

再问:∫AB+∫DA是什么意思呢再答:被积函数在AB,0A直线上积分。被积函数省写了。

设l为曲线x^2/4+y^2/3=1,其周长为a,计算曲线积分

简单的很,因为是曲线积分,所以可以将曲线方程带入化简积分函数,带入后可以把积分函数中3x^2+4y^2一项消去,得到了∫L(12+2xy)ds吧?因为由曲线方程同时乘以12得到的积分函数中的一项……对

求曲线积分∫根号(x^2+y^2)ds,其中L为圆周x^2+y^2=-2y

http://zhidao.baidu.com/question/1894230337967359940.html?oldq=1那天我答得一道题,跟这个非常非常像,你比着做吧.

过原点作曲线y=e^x的切线l,则曲线C、切线l及y轴所围成封闭区域的面积为

设切线l过曲线C上的点坐标为(a,b),则满足:b=e^a(1)切线斜率为:k=e^a则直线l方程为:y=(e^a)*x又l过点(a,b),则:b=(e^a)*a(2)联立(1)(2),可解得:a=1

计算曲线积分∫L (x^2+2xy)dx+(x^2+y^4)dy,其中L为点(0,0)到点(1,1)的曲线弧y=sin(

用格林公式啊,发现积分与路径无关,然后你就找一条最好简单的路径,比如(0,0)到(1,0)到(1,1),来算,最后1/3+1/5=8/15

曲线C:y=ex在点A处的切线l恰好经过坐标原点,则曲线C、直线l、y轴围成的图形面积为(  )

设A(a,ea),则∵y=ex,∴y′=ex,∴曲线C:y=ex在点A处的切线l的方程为y-ea=ea(x-a)将(0,0)代入,可得0-ea=ea(0-a),∴a=1∴A(1,e),切线方程为y=e

曲线积分封闭曲线∫(x²y-2y)dx+(x三次方/3-x)dy,L为一直线x=1,y=x,y=2x为边的三角

P=x²y-2yQ=x^3/3-xdQ/dx-dP/dy=x²-1-(x²-2)=1∫(x²y-2y)dx+(x三次方/3-x)dy=∫dxdy=(2-1)*1

高数格林公式问题设曲线 L为闭曲线|x|+|y|=2,取逆时针方向,则 ∮L(axdy-bydx)/(|x|+|y|)=

格林公式要求被积函数P,Q在区域内连续,而且一届偏导数也要连续.L围成的区域D包含原点,显然连续性是不满足的.所以不能用Green公式.但是把原点挖掉后,就连续了.所有可以以原点为圆心做一个充分小的圆

高数题,曲线积分若曲线L为球面x2+y2+z2=a2被平面x+y+z=0所截得的圆周,则第一类曲线积分∫L(x2+y2+

因为曲线L位于圆周上,所以x2+y2+z2=a2故∫L(x2+y2+z2)ds=a2∫Lds=a^2*2PI*a=2PI*a^3

第一型曲线积分的问题:1.计算∫下标L|y| ds,其中L为右半单位圆周:x^2+y^2=1,x>=0

因为所给曲线为关于x轴对称的半圆吧?我们可以用对称性,直接研究第一象限中的曲线部分吧?再乘以2不完了吗?因此绝对值可以去掉了吧?用极坐标代换简单的……分别计算简单,没有什么捷径可走的,分成两个曲线计算

若直线l为曲线C1:y=x2与曲线C2:y=x3的公切线,则直线l的斜率为______.

曲线C1:y=x2,则y′=2x,曲线C2:y=x3,则y′=3x2,直线l与曲线C1的切点坐标为(a,b),则切线方程为y=2ax-a2,直线l与曲线C2的切点坐标为(m,n),则切线方程为y=3m

曲线积分的问题计算第二类曲线积分∮y²dx+z²dy+x²dz,L为曲线x²+y

不是用格林公式吧,格林公式是计算平面的.好像题目错了吧,应该往z轴正方向才对,如果是往x轴正方向的话不就是一条线段了,怎么还有方向而言.用斯托克斯公式计算:原式=(-2)∫∫dydz+dzdx+dxd

计算 ∫ ∟(e^y+x)dx+(xe^y-2y)dy,其中L是以(0,0)为起点,(2,1)为终点的任意曲线

这题目不同上面题目终点是(1,1)(0,0)到(2,1)可以看作(0,0)到(2,0)到(2,1)(0,0)到(2,0)y=0x∈[0,2]代进式子∫L(e^y+x)dx+(xe^y-2y)dy=∫[

L∫xydx,其中L为y^2=x上,从A(1,-1)到B(1.1)的一般弧,计算第二类曲线积分

y²=x==>y=±√x∫_L(xy)dx=∫_(点A到原点)(xy)dx+∫_(原点到点B)(xy)dx=∫(1~0)x(-√x)dx+∫(0~1)x(√x)dx=∫(0~1)(x√x+x

曲线L为x^2+y^2=9,则曲线积分∫(x^2+y^2)ds=?

∫(x^2+y^2)ds=∫9ds=9*2π*3=54π曲线积分可以用曲线方程化简被积分函数;被积函数为1,积分结果为曲线弧长,即圆周长选择题没有这个答案就是题错了.

求曲线积分I=∫L(e^(x^2+y^2)^(1/2)) ds,其中L为圆周x^2+y^2=R^2

I=∫L(e^(x^2+y^2)^(1/2))ds=∫Le^(R)ds=e^R∫Lds=e^R·2πR=2πRe^R

设L为取正向的圆周x²+y²=4,则曲线积分∫L(x²+y)dx+(x-y²)d

用格林公式将一个封闭曲线上的线积分化为在此封闭区域内的面积分∫L(x²+y)dx+(x-y²)dy=(在曲线L围成的封闭区域上积分)∫∫{[∂(x-y²)/&