∫√x² y²ds其中L为x² y²=-2y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:52:23
你的答案是正确的,书上给的答案错误.在计算∫Lds时应当用曲线的周长,所以你给出球大圆的周长是正确的.而书上说的椭圆2y^2+z^2=a^2其实是那个球大圆投影到XOY面后的椭圆,这个显然不是题中的曲
http://zhidao.baidu.com/question/1894230337967359940.html?oldq=1那天我答得一道题,跟这个非常非常像,你比着做吧.
由对称性,∮xds=∮yds=∮zds,∮x^2ds=∮y^2ds=∮z^2ds所以,∮(y^2+2z)ds=1/3×∮(x^2+y^2+z^2+2x+2y+2z)ds=1/3×∮r^2ds因为平面x
再问:还没学高斯系数额,就用第一类曲面积分算法可以吗再答:这就是第一类曲面积分的算法。请参照二重积分中,计算曲面面积的方法,其中就有高斯系数。再问:请问倒数第二部a^4怎么出来变a^3了再答:这种解法
积分曲线x^2+(y+1)^2=1所以参数方程是x=cost,y=-1+sint.t∈[0,2π]ds=√[(x't)^2+(y't)^2]dt=dt∫√(x^2+y^2)ds=∫√(-2y)ds=∫
x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²
x²+y²+z²=2x=y∴2x²+z²=2所以L的参数方程为:x=y=cosθ,z=√2sinθ,0≤θ≤2πds=√(x'²+y'
因为所给曲线为关于x轴对称的半圆吧?我们可以用对称性,直接研究第一象限中的曲线部分吧?再乘以2不完了吗?因此绝对值可以去掉了吧?用极坐标代换简单的……分别计算简单,没有什么捷径可走的,分成两个曲线计算
再问:L2为什么是0再答:先是我的答案对吗?再问:不是再答:那还说再问:相差L2那个长度再答:我知道了再问:恩说下再答:答案是2/3吗?再问:不是你上面漏了一个根号2的再问:我会做了,那一段看做y是变
平面方程两边乘以4,得z+2x+4\3y=4,所以积分∫∫(z+2x+4\3y)ds=∫∫4ds,接下来计算平面与三坐标轴的三个交点围成的△的面积即可.方法不唯一,比如计算四面体的体积,而原点到平面的
先参数化x=|a|sinφcosθy=|a|sinφsinθz=|a|cosφ因为z>=0,且0
是不是L为圆x²+y²=R²,设x=Rcosθ,y=Rsinθds=d√(x²+y²)=Rdθ∮L(x²+y²)ds=∮0到2πR
L由y=√(a²-x²)和y=x和y=-x围成参数化:t:-π/4→π/4x=acost,y=asintdx=-asintdt,dy=acostdtds=adt∫L(x+y)e^(
Σ分为两部分Σ1:z=a+√(a^2-x^2-y^2)与Σ2:z=a-√(a^2-x^2-y^2).Σ1与Σ2在xoy面上的投影区域都是D:x^2+y^2≤a^2.Σ1与Σ2上,dS=a/√(a^2-
∫(x^2+y^2)ds=∫9ds=9*2π*3=54π曲线积分可以用曲线方程化简被积分函数;被积函数为1,积分结果为曲线弧长,即圆周长选择题没有这个答案就是题错了.
尻,这么容易,照代不就行咯ds=√[(dx)^2+(dy)^2+(dz)^2]
I=∫L(e^(x^2+y^2)^(1/2))ds=∫Le^(R)ds=e^R∫Lds=e^R·2πR=2πRe^R
分别计算三条线段的积分:L1x²+y²=a²∫[0,π/4]e^aadθ=[aπe^a]/4L2y=0∫[0,a]e^xdx=e^a-1L3y=x∫[0,√a/2]e^√