∫∫1 zds其中积分区域是球面x^2 y^2 z^2=4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 11:01:58
∫∫1 zds其中积分区域是球面x^2 y^2 z^2=4
计算曲面积分∫∫(x^2)dS,其中S为上球面z=根号(1-x^2-y^2),x^2+y^2

为啥没有下面的部分呢?条件不足.把问题修正一下.计算曲面积分∫∫Σx²dS,其中Σ为上球面z=√(1-x²-y²),x²+y²=1被z=-h所截得的部

计算曲面积分∫∫D x²yzds,其中区域D是球面x²+y²+z²=4在x≥0,

把球面参数化x=2sinucosvy=2sinusinvz=2cosu|J|=2^2*sinv=4sinv0再问:我这样理解对吗:因为这个是球面,所以只要对θ,φ求积分,r是常数?还有如果就在Oxyz

计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)

dz/dx=-x/√(4-x²-y²),dz/dy=-y/√(4-x²-y²)dS=√[1+(dz/dx)²+(dz/dy)²]dxdy=2

计算曲面积分I=∫∫(x+2y+z)ds其中区域:球面x^2+y^2+z^2=a^2在第一挂限部分

z=√(a^2-x^2-y^2),zx’=-x/√(a^2-x^2-y^2),zy’=-y/√(a^2-x^2-y^2),ds=√(zx’^2+zy’^2+1)dxdy=dxdy/√(a^2-x^2-

计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域,

题目中z=0表示的就是xoy平面,画个大概的立体图容易知道,此时所求的区域在Z正半轴,Z>0,当x=y且z=xy时,x=y=0,x=1是x的积分上限,若被积区域在x>1的范围,就不能构成封闭的积分区域

积分∫∫xy^2dy,其中积分区域 x 上限是2,下限是0;y 上限是x,下限是0;求计算过程

∫dx∫xy^2dy=∫x*1/3*y^3(0->x)dydx=1/3*∫x^4dx(x,0->2)=1/3*1/5*x^5(0->2)=32/15

利用球坐标求积分x2+y2+z2,其中区域是锥面z=x2+y2开根号与球面x2+y2+z2=r2所

球坐标变换,然后得到:原积分=∫(0到2∏)dΘ∫(0到П)sinφdφ∫(0到1)r^4dr=2П*2*(1/5)=4П/5.

求曲面积分zdS,Σ是圆柱面x^2+y^2=1,平面z=0和z=1+x所围立体的表面

圆柱面x^2+y^2=1的投影的面积0,只计算平面z=0和z=1+x即可,而平面z=0代入为0平面z=1+x的投影:x^2+y^2

计算三重积分∫∫∫z²dxdydx 其中Ω是由椭圆球面x²/a²+y²/b

你说错了,πab不是这个椭圆投影的面积.πab是x²/a²+y²/b²=1这个标准形式椭圆的面积,你现在的椭圆投影方程是什么呢?你的方程是:x²/a&

求定积分∫ye^(-y)dy,其中积分区域是0到正无穷

∫ye^(-y)dy=-∫ye^(-y)d(-y)=-∫yde^(-y)=-ye^(-y)+∫e^(-y)dy=-ye^(-y)-∫e^(-y)d(-y)=-ye^(-y)-e^(-y)=-(y+1)

求积分I= ∫ ∫根号(x^2 y^2)dxdy积分区域是D,其中D由x^2 y^2=1与x^2 y^2=x围成

看了你的题,我想,你可能题写地有错误,把加号都给省了,我按猜测的正确题目,试答如下:

计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域.

累次积分,投影到xoy面上,先对Z积分,积分限(0,xy),再对y积分(0,x),x积分(0,1)=1/28*13

计算积分∫∫ √y^2-xydxdy,其中D是由直线y=1,y=x,x=0围成的闭区域

看图片,不懂再问.再问:谢谢,我先看看

一道高等数学积分题∫e-x²dx 其中-x²是e的指数 积分区域是2到3

首先说明,e-x²是一个超越函数,在初等函数范围内不存在原函数,无法直接计算,可以先做积分变换,令x=t/(根号2),把积分区域变成2倍根号2到2倍根号3,再乘以1/(根号pai),(当然最

计算二重积分∫∫xydxdy ,其中积分区域 D是由y=x ,y=1 ,和x=2 所围成的三角 形域.D

X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x

数学曲线积分 求i=∫y²ds, 其中c是球面x²+y²+z²=r²与

由于曲线关于x,y,z具有轮换对称性,因此有:∫y²ds=∫x²ds=∫z²ds则∫y²ds=(1/3)∫(x²+y²+z²)ds