∫∫xydxdy.D为y=x².y=4x-x²所围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:57:03
∫∫xydxdy.D为y=x².y=4x-x²所围
已知二重积分区域D由直线y=x,圆x^2+y^2=2y,以及y轴围成,求二重积分∫∫xydxdy

用极坐标,x²+y²=2y的极坐标方程为:r=2sinθ∫∫xydxdy=∫∫r³cosθsinθdrdθ=∫[π/4→π/2]cosθsinθdθ∫[0→2sinθ]r

设T1=∫∫(x+y)^2dxdy T2=∫∫(x+y)^3dxdy 其中D为(x-2)^2+(y-1)^2

T1<T2首先T1=∫∫(x+y)^2dxdyT2=∫∫(x+y)^3dxdy.这两个相除(x+y).你仔细想一下,如果(x+y)始终>=1,或者始终<=1,那么就好判断了.因此现在问题就看在D范围内

二重积分高数题二重积分:∫d∫xydxdy D:y=x y=x/2 y=2 所围成的面积 计算出来 看看

观察图像可确定:原积分变为§(0,2)dy§(y,2y)xydx=§(0,2)ydy[x^2/2|(y,2y)]=§(0,2)[3y^3/2]dy=(3y^4/8)|(0,2)=6

算一个高数题目计算∫∫xydxdy,其中D由y=根号x,x+y=2,y=0围成的平面区域我这么化简的∫(下界0上界1)d

你把区域弄错了,y=0是x轴,你看成y轴了先y后x的次序:∫(下界0上界1)dx∫(下界0上界√x)xydy+∫(下界1上界2)dx∫(下界0上界2-x)xydy先x后y的次序:∫(下界0上界1)dy

计算二重积分,∫∫(x+y)dxdy,其中D为x^2+y^2≤x+y

这题的积分区域---圆域的圆心为(1/2,1/2),半径为(√2)/2因为圆心非原点,所以无论用直角坐标还是极坐标,上下限都不好确定.所以应想到把圆域平移到原点处,即用坐标变换.但二重积分的坐标变换涉

∫∫(y/x)^2dxdy,D为曲线y=1/x,y=x,y=2所围成的区域计算二重积分

原式=∫dy∫(y/x)²dx=∫y²dy∫(1/x²)dx=∫y²(y-1/y)dy=∫(y³-y)dy=(y^4/4-y²/2)│=2^

计算二重积分I=∫∫ x/(x²+y²)dxdy,其中D为区域x²+y²≤1,x

原式=∫dθ∫[(rcosθ)/r²]rdr(极坐标代换)=∫cosθdθ∫dr=[sin(π/2)-sin0](1-0)=1.

利用极坐标计算∫∫xydxdy,其中D是第一象限中x+y=1与x+y=2x所围成的闭区域.

x+y=1的极坐标方程为:r=1x+y=2x的极坐标方程为:r=2rcosθ,即r=2cosθ2cosθ=1,则:cosθ=1/2,θ=π/3请自己画图因此两曲线所围区域可分为两部分,第一部分θ:0-

设D为x*x+y*y

首先看被积函数的几何意义注意到x²+y²+z²=R²是球体,所以z=√(R²-x²-y²)就是上半个球体半径为R,在xoy面的投影

求二重积分∫∫x²ydxdy.其中D为y=x,y=0,x=1围成的区域.答案是1/6.

二重积分∫(0)(1)x²∫(0)(x)ydydx=∫(0)(1)x²*1/2(x²-0)dx=1/2∫(0)(1)x^4dx=1/2*1/5*x^5l(0)(1)=1/

求二重积分∫∫x√ydxdy,D为y=√x,y=x^2

再问:能画个图吗,我们老师要求画图啊再答:

计算积分∫∫ √y^2-xydxdy,其中D是由直线y=1,y=x,x=0围成的闭区域

看图片,不懂再问.再问:谢谢,我先看看

计算二重积分∫∫xydxdy ,其中积分区域 D是由y=x ,y=1 ,和x=2 所围成的三角 形域.D

X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x

∫∫(4-x-y)dxdy积分区域D为x^2+y^2

x=rcost,y=rsint,代入方程得r^2

设L为取正向的圆周x²+y²=4,则曲线积分∫L(x²+y)dx+(x-y²)d

用格林公式将一个封闭曲线上的线积分化为在此封闭区域内的面积分∫L(x²+y)dx+(x-y²)dy=(在曲线L围成的封闭区域上积分)∫∫{[∂(x-y²)/&