∫∫xyzds,∑是平面x y=z
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:35:37
自己先画出这个三角形,然后作直线:y=-x,可将该三角形分为两部分,这两部分用D1,D2表示,其中D1关于y轴对称,D2关于x轴对称在D2上,由于区域关于x轴对称,因此可考虑y的奇偶性,xy与cosx
Y=3+C/X齐次方程方程的:x*dy的/DX+y=0处;到:DY/Y=-dx/X;有LN|Y|=-ln|X|+C;解决方案太齐次方程为:Y=C/X;一般的解决方案然后将原来的方程为:Y=H(X)/X
1、证:P=2xy-y⁴+3,Q=x²-4xy³∂P/∂y=2x-4y³,∂Q/∂x=2x-4y³由
质点运动轨迹的参数方程:x=3t+5.(1)y=t²+t-7.(2)由(1)得:t=(x-5)/3代入(2)得:y=(x-5)²/9+(x-5)/3-7即:y是x的二次函数,所以轨
C,如图:3s、3px、3pz的图不好找,但它们的形状可参照1s、2px、2pz.再问:能讲一下轨道图为什么这样画?轨道图没看明白再答:这是解薛定谔方程的结果。薛定谔方程:是关于波函数ψ(x,y,z)
x=2ty=3t2+2=3x^2/4+2再问:选项A.直线B.圆C.椭圆D.抛物线选哪个啊,谢谢再答:有x的平方,是D抛物线
z=x²+xy+zy²设f(x,y,z)=x²+xy+(y²-1)z在(1,-1,2)处的切平面方向导数是∂f/∂x=2x+y=2x1-
设D2:由y=x^3y=-x^3x=-1所围成的区域.D3:由y=x^3y=-x^3y=1所围成的区域.则根据重积分的区域可加性和对称性:∫∫(D)(xy+cosxsiny)dxdy=∫∫(D2)(x
证明:设X=ai+bj,Y=ci+dj.a,b,c,d∈R.i,j分别为X,Y轴上的单位向量,且i^2=i•i=1*1*cos0°=1;j^2=j•j=1*1*cos0°=1,
第二题,因为整个球面是位于xOy平面上方的,角度φ由z正轴扫下来,到xOy平面就停止,扫描到的角度就是90°了答案在图片上,点击可放大./>再问:球面公式的球心和半径怎么看?==
1.在坐标轴上2.在第一和第三象限3.在直线y=-x上
∫∫Dye^(xy)dσ=∫(1→2)dx∫(1/x→2)ye^(xy)dy=∫(1→2)(2x-1)/x²•e^(2x)dx=[(1/x)•e^(2x)]|(1→2
∫∫√(y²-xy)dxdy=∫dy∫√(y²-xy)dx=∫dy∫√(y²-xy)(-1/y)d(y²-xy)=∫{(-1/y)(2/3)[(y²-
可以X型或Y型方面计算将二重积分化为普通定积分计算即可若是X型,先计算对y的定积分,后对x若是Y型,先积分对x的定积分,后对y若是Y型的话需要分段,因为积分区间中有两条曲线的交接.
记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17
你列的算式基本上是对的,但是计算过程中有错误,结果确实是1/180.详细过程如下:
原式=∫[1,2]dx∫[1/x,2]ye^(xy)dy=∫[1,2]dx∫[1/x,2]y/xe^(xy)d(xy)第一个对y的积分中x是常数=∫[1,2]1/xdx∫[1/x,2]yde^(xy)