(1)求证:cb是圆o的切线(2)若∠ECB=60度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:17:19
连结AE,EO则:∠BEA=90°,∠BAC=90°证得∠B=∠C=45°所以∠EOA=90°三角形CEA为等腰直角三角形,EF为斜边中线、高四边形OEFA为正方形,EF垂直OE,所以EF是圆的切线
∵∠AOB=∠BOC+∠COB,∠BOC=∠COB∴∠AOB=1/2∠CBORT⊿AOP,RT⊿BOP中∵OP=OP,OA=OB∴RT⊿AOP≌RT⊿BOP∴∠AOP=∠BOP∵∠AOB=∠AOP+∠
连接AEEO角EAB加FAE是90EAB等于AEOAEF等于FAEAEB是90AEF加AOE是90
再答:同学,你好,不懂可以追问我,如果满意,还望采纳!谢谢!
证明:连接OC∵OA=OB,CA=CB,OC=OC∴⊿AOC≌⊿BOC(SSS)∴∠ACO=∠BCO∵∠ACO+∠BCO=180º∴∠ACO=∠BCO=90º即OC⊥AB,根据垂直
证明:∵CO=AC∴∠O=∠CAO∵CB=CA∴∠B=∠CAB∴∠O+∠B=∠CAO+∠CAB=∠OAB∵∠O+∠B+∠OAB=180º∴∠OAB=90º,即AB⊥OA∵OA是半径
OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则
OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3
证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线
证明:连接OD∵BD∥CO∴∠B=∠COA∵∠B=1/2∠DOA∴∠DOC=∠COA连接AD所以AD⊥BD∵BD∥CO∴∠OCD=∠BDE(E为CD延长线一点)∠DAB=∠BDE∠DAB+∠B=90°
连接AD,OD,所以OD平行于AC,所以角ADO=角CAD,又因为,角CAD+角ADE=90度,所以角ADE+角ADO=角EDO=90度,所以OD垂直于ED,所以:DE是圆o的切线
连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB
因为ab经过点c且ca=cb所以c是ab的中点.又因oa=ob所以三角形oab是等腰三角形而c是底边的中点所以oc是三角形oab的底边中线也就是高所以oc垂直于ab而c在圆上所以oc是半径所以ab是切
证明:连接OB∵PA、PB是⊙O的切线∴PA=PB(从圆外一点引圆的两条切线长相等)又∵OA=OB,OP=OP∴△OAP≌△OBP(SSS)∴∠AOP=∠BOP∴∠AOB=∠AOP+∠BOP=2∠AO
1.连接OB因为CB‖OP所以∠BCO=∠POA因为OB=OC所以∠BCO=∠CBO所以∠CBO=∠POA又因为∠CBO=∠POB所以∠BOP=∠POA在△POB和△POA中PO=PO∠BOP=∠PO
第一个用垂径定理第二个也是垂径定理
题有错,改为:已知CD是三角形AB边上的高,以CD为直径的圆O分别交CA、CB于E、F,点G是AD的中点.求证:GE是圆O的切线.设CD中点(即圆O的圆心)为H,连接HE、DE,则∠DEC=∠DEA=
连接BD,则:BD⊥OC、AD⊥BD得:OC//AD再问:为什么AD⊥BD呢?对不起啊俺俺基础不大好再答:AB是圆的直径,则:∠ADB=90°,即:AD⊥BD又:CB、CD是圆的切线,则:OC⊥BD所