(1-9t^2)^2 1dt积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:58:36
不太看得懂你的问题,你应该想问积分上限函数吧(变限积分)?运用原函数存在定理即可,d/dt∫[x^2→0](sint/t^2)+1dt=[d/dt∫[u→0](sint/t^2)+1dt]*(x^2)
x^2-x^3
答案如图.
1、=2x(1+x^4)^(1/2)2、=d/dx(x^1/2)*∫(0~x^2)cost^2dt=(1/2)x^(-1/2)*∫(0~x^2)cost^2dt+(x^(1/2))*cos(x^4)*
∫和d抵消-∫dx=-x+c=-arccost+c因为aecsint+arccost=π/2所以-arccost+c=aecsint-π/2+c-π/2+c是常数,所以可以写在一起所以=arcsint
令:t=2x+1,则:dt=2dx,x=(t-1)/2∫f(t)dt=∫f(2x+1)2dx=2∫xe^xdx=2∫xde^x=2[xe^x-∫e^xdx]+C=2[xe^x-e^x]+C=2*e^x
点击[http://pinyin.cn/1aSld8B6HG2]查看这张图片.[访问验证码是:924505请妥善保管]能看见么?不能看见告诉我~再答:
你这里面t与x有没有关系啊如果没有的话你看是对t积分,那么与x就没关系了原式=d/dx积分号(0~x^2)1/(1+t^2)dt=d/dx(-x^2*arctan(t))再进行计算就是-2*x*arc
提个sint出来,就有sint*dt=d(cost),把剩下的化成只含cost的式子,往后很简单,你自己算吧!
这个形式的定积分是不可以求的但是∫(0,sinx)√(1+t^2)dt这个式子的导数是可以求的原题是不是求d[∫(0,sinx)√(1+t^2)dt]/dx呢?再问:���ǵ�再答:��������ɣ
你这题目有问题∫[a,x]tf(t)dt的导数就是xf(x)再问:∫[0,x]tf(t)dt的积分才是xf(x),但是现在下线不是0,是a.再答:你去看看莱布尼兹公式,下限时任意常数再问:我知道莱布尼
左边积分区域上下颠倒一次,然后另u=1/t.
设F'(x)=e^(-x)^2(定积分[cosx,1]e^(-t)^2)dt=F(1)-F(cosx)d(定积分[cosx,1]e^(-t)^2)dt/dx=[F(1)-F(cosx)]'=F'(1)
求导即可f(x+1)=2x-4f(x)=2x-6
无法表示为初等函数
证明:∫dt/(1+t²)=∫(-1/t²)dt/(1/t²+1)(以1/t代换t)=-∫dt/(1+t²)=∫dt/(1+t²),证毕.再问:=��
详细答案在下面.