对0到x上f(x+t)dt的变上限积分求导时令 x+t=u 则dt=du 为什么不是d(x+t)=du即dx+dt=du
对0到x上f(x+t)dt的变上限积分求导时令 x+t=u 则dt=du 为什么不是d(x+t)=du即dx+dt=du
∫(0,x)f(x-t)dt求导.令u=x-t,du=-dt,原式=-∫(x,0)f(u)du为什么
变限积分求导问题 ∫tf(x^2-t^2)dt 上限x,下限0.设x^2-t^2=u,怎么得到-1/2∫f(u)du 上
matlab du/dt=d(du)/dx^2 x属于(0,1),t属于(0,T]u(0,t)=u(1,t)=0u(x,
微积分中为什么令x-t=u则dt=-du?
∫(0到x)f(t)dt和∫(0到t)f(u)du,是相等的,为什么呢?
设f(x)为连续函数,证明:∫下0上x f(t)(x-t)dt=∫下0上x(∫下0上t f(u)du)dt
变限积分求导法!例题求 d/dx∫下限为0,上限为x (x-t)f'(t)dt原式=d/dx(x∫下限为0,上限为x)f
高数的变上限积分怎么做0到X,xf(t)dt - 0到X,tf(t)dt=1-cosx.求0到2分之π,f(x)dx=多
高数关于积分的求导∫(0~x)f(t)dt这个积分如果对x 求导就是一个标准的变上限积分=f(x)对吧那么对t求导呢
dx/(x+t)=dt
变上限积分求导:积分(上限3x,下线:0)f(t/3)dt