作业帮 > 数学 > 作业

“三等份角”是数学史上一个著名问题,但仅用尺规是不可能“三等份角”的.下面是

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 00:19:59
“三等份角”是数学史上一个著名问题,但仅用尺规是不可能“三等份角”的.下面是
“三等份角”是数学史上一个著名问题,但仅用尺规是不可能“三等份角”的.下面是
(1) ∵P(a,1|a),R(b,1|b)
∴M(b,1|a)
∵正比例函数
∴设y=kx(k≠0)
把M(b,1|a)代人
y=1|ab X
p.s.:(1)设直线OM的函数关系式为y=kx,P(a,1/a) R〔b,1/b) ……………1分
则M(b,1/a) ,∴k=(1/a)/b=1/(ab)……………2分
∴直线OM的函数关系式为y=1x/(ab)……………3分
(2)∵Q(a,1/b)满足y=1x/(ab)∴Q在直线OM上
(或用几何证法,见《九年级上册》教师用书191页) ……………4分
∵四边形PQRM是矩形,∴SP=SQ=SR=SM=1/2PR.
∴∠SQR=∠SRQ. ……………5分
∵PR=2OP,∴PS=OP=1/2PR.∴∠POS=∠PSO. ……………6分
∵∠PSQ是△SQR的一个外角,
∴∠PSQ=2∠SQR.∴∠POS=2∠SQR. ……………7分
∵QR‖OB,∴∠SOB=∠SQR. ……………8分
∴∠POS=2∠SOB. ……………9分
∴∠SOB=1/3 ∠AOB. ……………10分
(3)以下方法只要回答一种即可.
方法一:利用钝角的一半是锐角,然后利用上述结论把锐角三等分的方法即可.
方法二:也可把钝角减去一个直角得一个锐角,然后利用上述结论把锐角三等分后,再将直角利用等边三角形(或其它方法)将其三等分即可.
方法三:先将此钝角的补角(锐角)三等分,再作它的余角. ……………11分