椭圆x^2/a^2+y^2/b^2=1(a>1)一个焦点为F1,点P在椭圆上,且/OP/=/OF1/,则三角形OPF1的
椭圆x^2/a^2+y^2/b^2=1(a>1)一个焦点为F1,点P在椭圆上,且/OP/=/OF1/,则三角形OPF1的
椭圆离心率的问题,1.设椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点分别为F1,F2,点P在椭圆上,且
椭圆x^2/a^2+y^2=1的一个焦点为F,点P在椭圆上,且|向量OP|=向量|OF|,则△OPF的面积S等于
椭圆方程为x^2/a^2+y^2/b^2=1 (大于大于)的两个焦点分别为F1,F2,点P在椭圆C上,且PF1垂直于F1
椭圆X^2/a^2+Y^2/b^2=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且│PF1│=4/3,│PF
高中数学题:已知椭圆x²+y²/2=1的两个焦点是F1,F2,点P在椭圆上,且PF1垂直F1,则|P
高中解析几何椭圆一题F1 F2是椭圆的x^2/a^2+y^2/b^2=1的两个焦点(a>b>0)P为椭圆上一动点,M为P
椭圆C的焦点在x轴上,焦距为2,直线n:x-y-1=0与椭圆C交于A、B两点,F1是左焦点,且F1A┴F1B,则椭圆C的
椭圆x^2/a^2+y^2/b^2=1(a,b>0)的两个焦点F1,F2,点P在椭圆C上,且PF1⊥F1F2,|PF1|
已知椭圆x^2/a^2+y^2/b^2=1焦点分别为F1,F2,椭圆上存在点p,使得csin
一道高中椭圆题已知椭圆x^2/a^2+y^2/b^2=1的左右焦点分别为F1,F2,离心率为e,若椭圆上存在点P,使得P
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左,右焦点分别为F1,F2,点A在椭圆C上,且向量AF1×