椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求证|OP|^2+|OQ|^2
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 14:38:36
椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求证|OP|^2+|OQ|^2为定值.
请详细回答 万分感谢!
请详细回答 万分感谢!
设两点(x1,y1),(x2,y2),斜率分别是k1,k2
则k1k2=y1y2/x1x2=-1/4
根据
X^2/16+Y^2/4=1
y^2=4-x^2/4
所以[sqrt(4-x1^2/4)*sqrt(4-x2^2/4)]/x1x2=-1/4
可以化得
x2^2=16-x1^2
|OP|^2+|OQ|^2=x1^2+y1^2+x2^2+y2^2=4-(3/4)*x1^2+4-(3/4)*x2^2
=20
定值20,与P,Q的坐标无关
ps:sqrt是根号的意思
把20写成12了 怪不得错了
2个4忘记加了
则k1k2=y1y2/x1x2=-1/4
根据
X^2/16+Y^2/4=1
y^2=4-x^2/4
所以[sqrt(4-x1^2/4)*sqrt(4-x2^2/4)]/x1x2=-1/4
可以化得
x2^2=16-x1^2
|OP|^2+|OQ|^2=x1^2+y1^2+x2^2+y2^2=4-(3/4)*x1^2+4-(3/4)*x2^2
=20
定值20,与P,Q的坐标无关
ps:sqrt是根号的意思
把20写成12了 怪不得错了
2个4忘记加了
椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求证|OP|^2+|OQ|^2
椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求|OP|^2+|OQ|^2的
椭圆x2+4y2=16上有两点P、Q,O为原点,若OP、OQ斜率之积为 -1/4,求证|OP|2+|OQ|2为定值20.
椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求线段PQ中点M的轨迹方程?
椭圆x ^ 2/16+y ^ 2/4=1上有两点P,Q,O为坐标原点,连结OP,OQ,若Kop*kOQ=-1/4,
椭圆的证明问题已知椭圆x^2 /16+y^2 /4=1上有2定点p,q,o为原点,连接op,oq若k op*k oq=-
已知椭圆x^2 /16 + y^2 /4 = 1 上有两个定点P,Q,O为原点,连结OP,OQ
已知椭圆x^2/2+y^2=1,椭圆上有两点P.Q,O为原点,且有直线OP.OQ的斜率满足Kop*Koq=-1/2求线段
已知椭圆x^2/a^2+y^2/b^2=1上有两点P,Q,O为坐标原点,设直线OP,OQ的斜率分别为
设O点为坐标原点,曲线x^2+y^2+2x-6y+1=0上有两点P,Q满足关于直线x+my+4=0对,向量op*oq=0
证明与找错已知P,Q是椭圆9x^2+16y^2=1上的两个动点,O为坐标原点,若OP⊥OQ,则点O到弦PQ的距离是多少?
直线L:y=kx+b与椭圆x²/2+y²=1交于P、Q两点,且OP与OQ垂直(O为坐标原点),求证: