作业帮 > 数学 > 作业

A为3阶矩阵,a1,a2,a3为3维列向量组,(Aa1,Aa2,Aa3)为什么根据分块矩阵乘法可分为A(a1,a2,a3

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 04:11:45
A为3阶矩阵,a1,a2,a3为3维列向量组,(Aa1,Aa2,Aa3)为什么根据分块矩阵乘法可分为A(a1,a2,a3)?
A为3阶矩阵,a1,a2,a3为3维列向量组,(Aa1,Aa2,Aa3)为什么根据分块矩阵乘法可分为A(a1,a2,a3
A(a1,a2,a3) 【A(1×1),(a1,a2,a3)(1×3),符合矩阵乘法法则】
=(A*a1,A*a2,A*a3)
=(Aa1,Aa2,Aa3)