作业帮 > 数学 > 作业

x,y,z均为正实数 x+2y+3z=78 x^2+y^2+z^2=468 x的最大值可以被表示为a/b且a,b互质 求

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 09:00:15
x,y,z均为正实数 x+2y+3z=78 x^2+y^2+z^2=468 x的最大值可以被表示为a/b且a,b互质 求a+b的值
x,y,z均为正实数 x+2y+3z=78 x^2+y^2+z^2=468 x的最大值可以被表示为a/b且a,b互质 求
有题可知2y+3z=78-x(1),y^2+z^2=468-x^2(2).由柯西不等式可知(2^2+3^2)*(y^2+z^2)>=(2y+3z)^2(当2z=3y时取等号),即13*(468-x^2)>=(78-x)^2,化简得x(7x-78)0,所以x