x,y,z均为正实数 x+2y+3z=78 x^2+y^2+z^2=468 x的最大值可以被表示为a/b且a,b互质 求
x,y,z均为正实数 x+2y+3z=78 x^2+y^2+z^2=468 x的最大值可以被表示为a/b且a,b互质 求
设正实数x,y,z满足x^2-3xy+4y^2-z=0,则z/xy取得最大值时,x+2y+-z的最大值为 (A)0 (B
已知x,y,z均为实数,且满足:x+2y-z=6,x-y+2z=3.求x+y+z的最小值
已知x,y,z均为非负实数,且满足x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值?最小值?要详细
x,y,z为实数 且(y-z)^2+(x-y)^2+(z-x)^2=(y+z-2x)^2+(x+z-2y)^2+(x+y
x,y,z为实数且(y-z)平方+(x-y)平方+(z-x)平方=(y+z-2x)平方+(z+x-2y)平方+(x+y-
已知x,y,z是三个非负数,并且满足3x+2y+z=5,2x+y-3z=1.设k=3x+y-7z,记a为k的最大值,b为
设x,y,z为正实数,且x+y+z>=xyz,求x^2+y^2+z^2/xyz的最小值
已知x,y,z为非负实数,且满足x+y+z=30,3x+y-z=50.求u=5x+4y+2z的最大值和最小值.
设X,Y,Z为正实数,求(1+2X)*(3Y+4X)*(4y+3z)*(2z+1)/(x*y*z)的最小值
已知 x,y,z都是正实数,且 x+y+z=xyz 证明 (y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1
已知x y z均为实数,且a=x²-2y+π/2 b=y²-2z+ π/3 c=z²-2x