已知函数f(x)=log2((x-1)/(x+1)),g(x)=2ax+1-a,又h(x)=f(x)+g(x)讨论h(x
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:05:23
已知函数f(x)=log2((x-1)/(x+1)),g(x)=2ax+1-a,又h(x)=f(x)+g(x)讨论h(x)的奇偶性
f(x)=log(2)[(x-1)/(x+1)], g(x)=2ax+1-a, h(x)=f(x)+g(x)
1、f(-x)=log(2)[(-x-1)/(-x+1)]=log(2)[(x+1)/(x-1)]=-log(2)[(x-1)/(x+1)]=-f(x)
g(-x)=-2ax+1-a,若1-a=0,即a=1,则g(-x)=-g(x),
∴h(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-h(x),则h(x)为奇函数
若a={-log(2)[(x-1)/(x+1)]}/(2x)=-f(x)/(2x),则g(x)=-f(x)+1+f(x)/(2x)
∴h(x)=f(x)+g(x)=1+f(x)/(2x),此时,h(-x)=1+f(-x)/(-2x)=1-f(x)/(-2x)=1+f(x)/(2x)=h(x)
∴ 此时h(x)为偶函数
若a取上述两种情况之外的值,则h(x)为非奇非偶函数
为什么a={-log(2)[(x-1)/(x+1)]}/(2x)=-f(x)/(2x)?老师只讲了两种.
f(x)=log(2)[(x-1)/(x+1)], g(x)=2ax+1-a, h(x)=f(x)+g(x)
1、f(-x)=log(2)[(-x-1)/(-x+1)]=log(2)[(x+1)/(x-1)]=-log(2)[(x-1)/(x+1)]=-f(x)
g(-x)=-2ax+1-a,若1-a=0,即a=1,则g(-x)=-g(x),
∴h(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-h(x),则h(x)为奇函数
若a={-log(2)[(x-1)/(x+1)]}/(2x)=-f(x)/(2x),则g(x)=-f(x)+1+f(x)/(2x)
∴h(x)=f(x)+g(x)=1+f(x)/(2x),此时,h(-x)=1+f(-x)/(-2x)=1-f(x)/(-2x)=1+f(x)/(2x)=h(x)
∴ 此时h(x)为偶函数
若a取上述两种情况之外的值,则h(x)为非奇非偶函数
为什么a={-log(2)[(x-1)/(x+1)]}/(2x)=-f(x)/(2x)?老师只讲了两种.
一般情况下呢,大家都把a当作常数,若把a当作常数呢,当然就只有两种情况
a={-log(2)[(x-1)/(x+1)]}/(2x)=-f(x)/(2x)这种情况下,a含有x变量,当然是不存在的
但是,原题目并没有限定a是否为常数或变量,全面讨论的情况下,当然要考虑a作为变量的可能
至于a是怎么来的,当然是先假定h(x)是偶函数,然后用h(-x)=h(x)倒推回来的
a={-log(2)[(x-1)/(x+1)]}/(2x)=-f(x)/(2x)这种情况下,a含有x变量,当然是不存在的
但是,原题目并没有限定a是否为常数或变量,全面讨论的情况下,当然要考虑a作为变量的可能
至于a是怎么来的,当然是先假定h(x)是偶函数,然后用h(-x)=h(x)倒推回来的
已知函数f(x)=log2((x-1)/(x+1)),g(x)=2ax+1-a,又h(x)=f(x)+g(x)讨论h(x
已知函数f(x)=log2((x-1)/(x+1)),g(x)=2ax+1-a,又h(x)=f(x)+g(x)
已知函数f(x)=log2((x-1)/(x+1)),g(x)=2ax+1-a,又h(x)=f(x)+g(x)a=1时
我看了你的回答 已知函数f(x)=log2((x-1)/(x+1)),g(x)=2ax+1-a,又h(x)=f(x)+g
设函数f(x)=a/x+xlnx,g(x)=x^3- x^2-3,(1)讨论函数h(x)=f(x)/x 的单调性.
已知函数f(x)=lnx,g(x)=ax^2+3X (1)若a=2,求h(x)=f(x)-g(x)
已知函数f(x)=x^3,g(x)=x + x^(1/2) .求函数h(x)=f(x)-g(x)的零点个数,说明理由
已知函数f(x)=log2(2-x)+log2(2+x),g(x)=log2(2x-1)
已知函数f(x)=1/2x2+alnx,g(x)=(a+1)x(a≠-1),H(x)=f(x)-g(x).
设函数f(x)=log2(-x),g(x)=x+1,F(x)={g(x),f(x)大于等于g(x);f(x),f(x)小
已知函数f(x)=1/2x^2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)=3x,其中a∈R且
已知f(x)=x+1 g(x)=2^x h(x)=-x+6,设函数F(x)=min{f(x),g(x),h(x)},则F