如果函数f(x)在区间(a,b)内可导,且存在常数M使|f'(x)|小于等于M,试证f(x)在(a,b)内有界
如果函数f(x)在区间(a,b)内可导,且存在常数M使|f'(x)|小于等于M,试证f(x)在(a,b)内有界
证明:如果函数f(x)在[a,b]上可导,且(f(x)导数的绝对值)小于等于M,则,[(f(b)-f(a))的绝对值 .
设f(X)在[a,b]上连续,且f(a)小于a,f(b)大于b,证明在区间(a,b)内至少存在一点m,使f(m)=m
若f(x)在[a,b]上连续,在(a,b)内可导,|f'(x)|小于等于M,f(a)=0,求证:f(x)dx在[a,b]
设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c
已知函数f(x)的定义域为R,且f(-x)=1/f(x)大于0,若g(x)=f(x)+c(c为常数)在区间大于a小于b上
函数f(x)在区间[a,b]上满足罗尔定理的条件,且f(x)不恒为常数,证明在(a,b)内至少存在一点 ξ,使f(
奇函数f(x)在区间[a,b]上是减函数且有最小值m,那么f(x)在[-b,-a]上是( )
假设f(x)在区间[a,b]上连续 在(a,b)内可导 且f'(x)
设函数f(x)在(a,b)内连续,且f(a+),f(b-)存在,证明:函数f(x)在(a,b)内有界.
函数f(x)证明题如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)=0,那么在开
如果函数f(x)在(a,b)内可导,且在a点的右导数及在b点的左导数都存在,就说f(x)在闭区间【a,b】