已知数列{an}的各项都是正数,且满足a0=1,an+1(n+1是a的角标)=1/2an(4-an)证明an
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 21:52:31
已知数列{an}的各项都是正数,且满足a0=1,an+1(n+1是a的角标)=1/2an(4-an)证明ann∈N 另外此题中n都是角标中的字母,不是倍数
a(n+1)=(1/2)an(4-an)
2a(n+1)=4an-an^2
=-[an^2-2*2an+4]+4
=-(an-2)^2+4
2[a(n+1)-2]=-(an-2)^2
设bn=an-2,b0=a0-2=-1
2b(n+1)=-(bn)^2
b(n+1)=(-1/2)(bn)^2
=(-1/2){(-1/2)[b(n-1)]^2}^2=(-1/2)^3*[b(n-1)]^4
=(-1/2)^3*{(-1/2)[b(n-2)]^2}^4=(-1/2)^7*[b(n-2)]^8
……
=(-1/2)^[2^(n-1)-1]*(b2)^[2^(n-1)]
=(-1/2)^[2^n-1]*(b1)^[2^n]
=(-1/2)^[2^(n+1)-1]*(b0)^[2^(n+1)]
=(-1/2)^[2^(n+1)-1]*(-1)^[2^(n+1)]
=(-1/2)^[2^(n+1)-1]
bn=(-1/2)^[2^n-1]
an=2+bn=2+(-1/2)^[2^n-1]
a(n+1)=2+(-1/2)^[2^(n+1)-1]<2
a(n+1)-an=(-1/2)^[2^(n+1)-1]-(-1/2)^[2^n-1]
={(-1/2)^[2^n-1]}{(-1/2)^[2^(n+1)-2^n]-1}
=[(-1/2)^(2^n-1)]{(-1/2)^(2^n)-1}
又因2^n-1为奇数,所以(-1/2)^(2^n-1)<0;
因0<(-1/2)^(2^n)<1为奇数,所以(-1/2)^(2^n)-1<0
所以[(-1/2)^(2^n-1)]{(-1/2)^(2^n)-1}>0
所以a(n+1)-an>0,an<a(n+1),
综上所述an<a(n+1)<2.
2a(n+1)=4an-an^2
=-[an^2-2*2an+4]+4
=-(an-2)^2+4
2[a(n+1)-2]=-(an-2)^2
设bn=an-2,b0=a0-2=-1
2b(n+1)=-(bn)^2
b(n+1)=(-1/2)(bn)^2
=(-1/2){(-1/2)[b(n-1)]^2}^2=(-1/2)^3*[b(n-1)]^4
=(-1/2)^3*{(-1/2)[b(n-2)]^2}^4=(-1/2)^7*[b(n-2)]^8
……
=(-1/2)^[2^(n-1)-1]*(b2)^[2^(n-1)]
=(-1/2)^[2^n-1]*(b1)^[2^n]
=(-1/2)^[2^(n+1)-1]*(b0)^[2^(n+1)]
=(-1/2)^[2^(n+1)-1]*(-1)^[2^(n+1)]
=(-1/2)^[2^(n+1)-1]
bn=(-1/2)^[2^n-1]
an=2+bn=2+(-1/2)^[2^n-1]
a(n+1)=2+(-1/2)^[2^(n+1)-1]<2
a(n+1)-an=(-1/2)^[2^(n+1)-1]-(-1/2)^[2^n-1]
={(-1/2)^[2^n-1]}{(-1/2)^[2^(n+1)-2^n]-1}
=[(-1/2)^(2^n-1)]{(-1/2)^(2^n)-1}
又因2^n-1为奇数,所以(-1/2)^(2^n-1)<0;
因0<(-1/2)^(2^n)<1为奇数,所以(-1/2)^(2^n)-1<0
所以[(-1/2)^(2^n-1)]{(-1/2)^(2^n)-1}>0
所以a(n+1)-an>0,an<a(n+1),
综上所述an<a(n+1)<2.
已知数列{an}的各项都是正数,且满足a0=1,an+1(n+1是a的角标)=1/2an(4-an)证明an
一道高中数学数列题已知数列{an}的各项都是正数,且满足a0=1,an+1(n+1是a的角标)=1/2an(4-an)1
高一数列题 !已知数列{an}的各项都是正数,且满足:a0=1,an 1=1/2an*(4-an).(n属于N)
已知数列{an}的各项都是正数,且满足:a0=1,a(n+1)=an(4-an)/2,n∈N.
已知数列{an}的各项都是正数,且满足:a0=1,an+1=1/2an*(4-an).(n属于N)
已知数列{an}的各项都是正数且满足a0=1,an+1=an(4-an)/2(n∈N),求数列{an}的通项公式
已知各项均为正数的数列{an}满足(an+1)²-an+1×an-2an²=0,且a3+2是a2,a
设数列{An}的各项都是正数,且A1=1,(An)+1/(An+1)+1=(An+1)/2An,Bn=An平方+An.
已知数列an满足:an+1-2an=2^n+1,且a1=2 (1)证明{an/2^n}是等差数列 (2)求数列an的
已知数列an的各项均为正数且a1+a2+a3+.an=1/2(an²+an)求证数列an是等差数
已知各项都是正数的等比数列{Xn},满足(Xn)^an=(Xn+1)^an+1=(Xn+2)an+2.证明数列{
设数列{an}的各项都是正数,且对任意n属于N+,都有an(an+1)=2(a1+a3+.+an).