如图,ABCD是梯形,AB∥CD,∠BAD=90°,PA⊥面ABCD,且AB=1,AD=1,CD=2,PA=3,E为PD
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/06 11:12:19
如图,ABCD是梯形,AB∥CD,∠BAD=90°,PA⊥面ABCD,且AB=1,AD=1,CD=2,PA=3,E为PD的中点
(Ⅰ)求证:AE∥面PBC.
(Ⅱ)求直线AC与PB所成角的余弦值;
(Ⅲ)在面PAB内能否找一点N,使NE⊥面PAC.若存在,找出并证明;若不存在,请说明理由.
(Ⅰ)求证:AE∥面PBC.
(Ⅱ)求直线AC与PB所成角的余弦值;
(Ⅲ)在面PAB内能否找一点N,使NE⊥面PAC.若存在,找出并证明;若不存在,请说明理由.
(Ⅰ)取PC中点为F,连接EF,BF
又E为PD的中点,所以EF∥DC且EF=
1
2DC
所以EF∥AB,且EF=AB,所以ABFE为平行四边形(2分)
所以AE∥BF,因为AE⊄面PBC,所以AE∥面PBC(4分)
(Ⅱ)建立如图所示的空间直角坐标系,
则A、B、C、D、P、E的坐标分别为A(0,0,0),
B(1,0,0),C(2,1,0),D(0,1,0),
P(0,0,3),E(0,
1
2,
3
2)(5分)
从而
AC=(2,1,0),
PB=(1,0,-3)
设
AC与
PB的夹角为θ,则
cosθ=
AC•
PB
|
AC|•|
又E为PD的中点,所以EF∥DC且EF=
1
2DC
所以EF∥AB,且EF=AB,所以ABFE为平行四边形(2分)
所以AE∥BF,因为AE⊄面PBC,所以AE∥面PBC(4分)
(Ⅱ)建立如图所示的空间直角坐标系,
则A、B、C、D、P、E的坐标分别为A(0,0,0),
B(1,0,0),C(2,1,0),D(0,1,0),
P(0,0,3),E(0,
1
2,
3
2)(5分)
从而
AC=(2,1,0),
PB=(1,0,-3)
设
AC与
PB的夹角为θ,则
cosθ=
AC•
PB
|
AC|•|
如图,ABCD是梯形,AB∥CD,∠BAD=90°,PA⊥面ABCD,且AB=1,AD=1,CD=2,PA=3,E为PD
如图1,平面PAD⊥平面ABCD,ABCD为正方形,△PAD为直角三角形,且PA=AD=2 E F G为PA PD CD
如图,平面PAD⊥平面ABCD,ABCD为正方形,△PAD为直角三角形,且PA=AD=2 E F G为PA PD CD中
四棱锥P-ABCD中,PA⊥ABCD,ABCD是直角梯形,E为BC的中点,∠BAD=∠ADC=90°,AB=3,CD=1
如图,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,PA=
如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AB⊥AD,CD⊥AD,CD=2AB,E为中点(
如图所示,已知四棱柱P-ABCD的底面为直角梯形,AB//CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC
如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2B
四棱锥S-ABCD的底面是一直角梯形,AB‖CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E为PC中点
已知四棱锥P-ABCD的底面为直角梯形,AB∥CD,∠DAB=π2,PA⊥底面ABCD,且AD=CD=12AB=1,M是
如图已知四棱锥P-ABCD,PA垂直于平面ABCD,底面ABCD为直角梯形,角A=90,AB//CD,AB=1/2CD,
如图,梯形ABCD中,AD∥BC,AB=DC,P为梯形ABCD外一点,PA、PD分别交线段BC于点E、F,且PA=PD.