作业帮 > 数学 > 作业

在三角形ABC中,a,b,c分别是角A,B,C的对边,向量m=(a-2b,c),n=(CosC,CosA),m垂直n,且

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 08:32:44
在三角形ABC中,a,b,c分别是角A,B,C的对边,向量m=(a-2b,c),n=(CosC,CosA),m垂直n,且角C六十度,若c=2,则求三角形最大面积
在三角形ABC中,a,b,c分别是角A,B,C的对边,向量m=(a-2b,c),n=(CosC,CosA),m垂直n,且
向量垂直:(a-2b)cosC+ccosA=0.
由正弦定理:sinAcosC+sinCcosA-2sinBcosC=0
所以:sin(A+C)-2sinBcosC=0 即:sinB(1-2cosB)=0
因为sinB不等于0,所以 cosB=1/2.
有余弦定理:4=a^2+b^2-2abcosC=a^2+b^2-ab>=ab
S=absinC/2