作业帮 > 数学 > 作业

如图,在△ABC中,∠A=50º,∠ACB=75º,∠E是两条角平分线的交点.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 15:41:46
如图,在△ABC中,∠A=50º,∠ACB=75º,∠E是两条角平分线的交点.

   (1) 求∠BEC的度数;
(2)求∠BFC的度数;
(3)若点A1是内角∠ABC、外角∠ACD平分线的交点,试探索∠BA1C与∠BAC的数量关系,并说明理由;
(4)若∠A=96º,在(3)的情况下,作∠A1BC与∠A1CD的平分线交与点A2,以此类推,∠A4BC与∠A4CD的平分线交与点A5,求∠BA5C的度数.(直接写出解答过程).
如图,在△ABC中,∠A=50º,∠ACB=75º,∠E是两条角平分线的交点.
(1)因为∠A=50,∠ACB=75
所以∠ABC=55
又因为BE平分角∠ABC,EC平分∠ACB
所以∠EBC=27.5,∠ECB=37.5
所以∠BEC=115
(2)因为∠ABC=55,∠ACB=75
所以∠CBF=62.5,∠BCF=52.5
所以∠BFC=65
(3)因为∠EBC=37.5 ,∠ACB=75
所以∠BCF=∠ACA1=52.5
所以∠A1CB=155
所以∠A1=25
所以∠A=2∠A1
(4)∠A=2A1=4A2=8A3=16A4=32A5
因为∠A=96
所以∠A5=3