高中一年级数学问题在三角形ABC中,a、b、c的对边,且cosB、cosC=-b/2a+c求角B的大小若b=根号13,a
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 19:57:24
高中一年级数学问题
在三角形ABC中,a、b、c的对边,且cosB、cosC=-b/2a+c
求角B的大小
若b=根号13,a+c=4,求a的值
找到一道类试题你看看解法,
三角形ABC中,a b c分别是角ABC的对边 且cosB/cosC=- b/2a+c 1.求角B的大小 2.若b=根号3 a+c=4 求a的值
(1).
因为:cosB/cosC=-b/2a+c=-sinB/(2sinA+sinC)
所以:2cosBsinA+cosBsinC=-sinBcosC
就有:
2cosBsinA+cosBsinC+sinBcosC
=2cosBsinA+sin(B+C)
=2cosBsinA+sinA
=(2cosB+1)sinA
=0
在三角形ABC中,sinA>0
所以只有:cosB=-1/2
那么:B=120
(2).
b=根号13,a+c=4
cosB=-1/2=(a^2+c^2-b^2)/2ac=[(a+c)^2-2ac-b^2]/2ac
=(16-2ac-13)/2ac
=(3-2ac)/2ac
所以:
3-2ac=-ac
ac=3
所以由a+c=4,ac=3可以解得
a=3或者a=1
三角形ABC中,a b c分别是角ABC的对边 且cosB/cosC=- b/2a+c 1.求角B的大小 2.若b=根号3 a+c=4 求a的值
(1).
因为:cosB/cosC=-b/2a+c=-sinB/(2sinA+sinC)
所以:2cosBsinA+cosBsinC=-sinBcosC
就有:
2cosBsinA+cosBsinC+sinBcosC
=2cosBsinA+sin(B+C)
=2cosBsinA+sinA
=(2cosB+1)sinA
=0
在三角形ABC中,sinA>0
所以只有:cosB=-1/2
那么:B=120
(2).
b=根号13,a+c=4
cosB=-1/2=(a^2+c^2-b^2)/2ac=[(a+c)^2-2ac-b^2]/2ac
=(16-2ac-13)/2ac
=(3-2ac)/2ac
所以:
3-2ac=-ac
ac=3
所以由a+c=4,ac=3可以解得
a=3或者a=1
高中一年级数学问题在三角形ABC中,a、b、c的对边,且cosB、cosC=-b/2a+c求角B的大小若b=根号13,a
在三角形ABC中,a,b,c分别是角A,B,C的对边且cosB/cosC=-b/2a+c求B
在三角形ABC中 a,b,c分别是角A,B,C的对边 且cosB/cosC=-b/(2a+c) 求角B大小 (2)若b=
三角形ABC中,A,B,C的对边分别为a,b,c.且cosC分之cosB=-2a+c分之b.求 角B的大小 若b=根号1
在三角形ABC中,a b c分别是角ABC的对边 且cosB/cosC=- b/2a+c 1.求角B的大小 2.若b=根
在三角形ABC中,角A、B、C的对边分别为a、b、c,且cosC/cosB=3a-c/b,求sinB的值
在三角形ABC中,a.b.c分别是角A,B,C的对边,且COSB分之COSC=-b分之 2a+c,1.求角B的大小
在三角形ABC中,a,b,c分别是角A,B,C对边的长,且满足cosB/cosC=-b/(2a+c),求角B的值.若b=
在三角形ABC中,角A,B,C所对的边为a,b,c,若cosC/cosB=3a-c/b.求sinB的值,若b=4根号2,
ABC中,a,b,c是A,B,C所对的边,S是该三角形的面积,且cosB/cosC=-b/(2a+c),求角B的大小
在三角形ABC中,a,b,c分别是角A,B,C的对边,且cosC/cosB =(3a-c)/b
在三角形ABC中,角A,B,C所对的边为a、b、c且 cosC/cosB=(3a-c)/b