作业帮 > 数学 > 作业

求由曲线Y=e^(-x)及直线y=0之间位于第一象限内的平面图形的面积及此平面图形绕x轴旋转而成的旋转体的体积

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 16:08:07
求由曲线Y=e^(-x)及直线y=0之间位于第一象限内的平面图形的面积及此平面图形绕x轴旋转而成的旋转体的体积
求由曲线Y=e^(-x)及直线y=0之间位于第一象限内的平面图形的面积及此平面图形绕x轴旋转而成的旋转体的体积
不定积分:∫πY²dx=∫π(e^(-x))²dx=∫π*e^(-2x)dx=-π/2*e^(-2x)+C(c为常数)
定积分:【-π/2*e^(-2∞)+C】-【-π/2*e^(-20)+C】=π/2
此平面图形绕x轴旋转而成的旋转体的体积为π/2
求由曲线Y=e^(-x)及直线y=0之间位于第一象限内的平面图形的面积及此平面图形绕x轴旋转而成的旋转体的体积 求面积和旋转体体积求由曲线 y=e^x 和 y=e^(-x) 及 x=1所围成的平面图形的面积及此图形绕x轴旋转一周所形 一平面图形由曲线y^2=x和y=x围成,求此平面图形的面积,以及此平面图形绕x轴旋转而生成的旋转体的体积 求由曲线y=2-X^2 ,y=2X-1及X≥0围成的平面图形的面积S以及平面图形绕X轴旋转一周所得旋转体的体积Vx 求由直线y=0,x=0,x=1和曲线y=x^3+1所围成的平面图形的面积及该图形x轴旋转一周所得旋转体的体积. 1求由曲线y=e的x次方,及直线x=ln2,x=ln4,y=0所围成的平面图形绕x轴旋转一周所成的旋转体的体积. 求由曲线y=e^x,x轴,y轴及直线x=1所围成的平面图形绕Y轴旋转所成旋转体的体积V 求u曲线y=x方与直线x=1 x=2 及x轴围成的平面图形的面积.寄该平面围绕x轴旋转一周而成的旋转体体积 二重积分计算体积平面图形D由曲线,直线及轴围城.(1)求此平面图形的面积;(2)求此平面图形绕轴旋转而成的旋转体体积. 求由曲线y=e^(-x)与直线x=0,x=1,y=0所围成的平面图形绕y轴旋转一周而成的旋转体的体积 高数旋转体体积、求由y=x/1 y=x ,及x轴所围的平面图形的面积,及该平面图形绕轴旋转一周所得旋转体体积 求由曲线Y=e^-x 与直线x=0 x=1 y=0 围成平面图形绕y轴旋转而成的旋转体的体积