已知抛物线y=x²+kx+2k-4 (1)当k=2,抛物线的顶点坐标为___(2)求证:无论k为何值,抛物线与
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 10:20:17
已知抛物线y=x²+kx+2k-4 (1)当k=2,抛物线的顶点坐标为___(2)求证:无论k为何值,抛物线与x轴总有
交点,且经过x轴上一个定点;(3)若抛物线与x轴交于A(X1,0),B(x2,0)(A为定点且点A在B的左侧),与y轴交于点C,且S△ABC=15,求K的值.)
交点,且经过x轴上一个定点;(3)若抛物线与x轴交于A(X1,0),B(x2,0)(A为定点且点A在B的左侧),与y轴交于点C,且S△ABC=15,求K的值.)
(1)当k=2时,抛物线为y=x^2+2x,
配方得y=x^2+2x=x^2+2x+1-1
得y=(x+1)^2-1,
∴顶点坐标为(-1,-1)(也可由顶点公式求得)
(2)令y=0,有x^2+kx+2k-4=0,
(一元二次方程根的判别式)
△=k^2-4(2k-4)=k^2-8k+16=(k-4)^2,
∵无论k为什么实数,(k-4)^2≥0,
方程x^2+kx+2k-4=0都有解,
即抛物线总与x轴有交点.
求根公式得x=-k±|k-4|/2,
k≥4时,x=-k±(k-4)/2,x1=-2,x2=-k+2
当k<4时,x=-k±(4-k)/2,x1=-k+2,k2=-2.
即抛物线与x轴的交点分别为(-2,0)和(-k+2,0)
点(-2,0)是x轴上的定点.
(3)由抛物线与x轴的交点分别为(-2,0) 和(-k+2,0) 知,
当-2<-k+2,即k<4时,A点坐标为(-2,0),B为(-k+2,0)即x1=-2,x2=-k+2.
由|x1|<|x2|得-k+2>2,解得k<0.
由S△ABC=15可得1/2AB*OC=15.
AB=-k+2-(-2)=4-k,OC=|2k-4|=4-2k,
∴1/2(4-k)(4-2k)=15,整理得k^2-6k-7=0,解得k=7(舍去)或k=-1.
不懂追问.
配方得y=x^2+2x=x^2+2x+1-1
得y=(x+1)^2-1,
∴顶点坐标为(-1,-1)(也可由顶点公式求得)
(2)令y=0,有x^2+kx+2k-4=0,
(一元二次方程根的判别式)
△=k^2-4(2k-4)=k^2-8k+16=(k-4)^2,
∵无论k为什么实数,(k-4)^2≥0,
方程x^2+kx+2k-4=0都有解,
即抛物线总与x轴有交点.
求根公式得x=-k±|k-4|/2,
k≥4时,x=-k±(k-4)/2,x1=-2,x2=-k+2
当k<4时,x=-k±(4-k)/2,x1=-k+2,k2=-2.
即抛物线与x轴的交点分别为(-2,0)和(-k+2,0)
点(-2,0)是x轴上的定点.
(3)由抛物线与x轴的交点分别为(-2,0) 和(-k+2,0) 知,
当-2<-k+2,即k<4时,A点坐标为(-2,0),B为(-k+2,0)即x1=-2,x2=-k+2.
由|x1|<|x2|得-k+2>2,解得k<0.
由S△ABC=15可得1/2AB*OC=15.
AB=-k+2-(-2)=4-k,OC=|2k-4|=4-2k,
∴1/2(4-k)(4-2k)=15,整理得k^2-6k-7=0,解得k=7(舍去)或k=-1.
不懂追问.
已知抛物线y=x²+kx+2k-4 (1)当k=2,抛物线的顶点坐标为___(2)求证:无论k为何值,抛物线与
已知抛物线y=x2+kx+2k-4 (1)当k=2时,求出此抛物线的顶点坐标;
关于抛物线已知:抛物线y=kx*x+2√3(2+k)x+k*k+k经过坐标原点(1)求抛物线的解析式和顶点B的坐标(2)
已知抛物线2分之一x的平方+3x-1和直线y=x-k,(1)当k为和值时,抛物线与直线有两个交点?(2)k为何值 抛物线
无论k为何值时,直线y=2kx+1和抛物线y=x2+x+k( )
已知抛物线的方程为y2=2x,直线l的方程为y=kx 1(k∈R).当k分别为何值时,直线l与抛物线
已知抛物线的方程为y²=4x,直线l过定点P(-2,1),斜率为k,当k为何值时,直线l与抛物线:
1.已知抛物线y=(k-2)x平方-kx的对称轴是直线x=1,求抛物线顶点坐标
已知抛物线y=2(k+1)x2+4kx+2k-3,求: k为何值时,抛物线与x轴的两个交点分别位于原点两侧?
已知抛物线y=(k-1)x²+2kx+k-2与x轴有两个不同的交点(1)求k的取值范围(2)当k为整数,且关于
已知抛物线C:y^2=4x,直线L:y=kx+b与C交于A,B两点,O为坐标原点(1)当k=1时,且直线L过抛物线C的焦
已知抛物线的方程为y^2=4x,直线l过定点p(-2,1),斜率为k,当k为何值时,直线l与抛物线有一个公共点;有...