能否用待定系数法求数列通项?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 06:07:09
能否用待定系数法求数列通项?
(1)a1=3,a(n+1)=2a(n)+3*2^n,(n≥1);
(2)a1=0,a(n+1)=a(n)+2n+1,(n≥1);
(3)a1=1,a(n)=[n/(n-1)]a(n-1)+2n*3^(n-2),(n≥2)
注意:a后面的括号内为下标,看清楚问题,我问的是能否用待定系数法做题!
说可以的请给出解题方法!
(1)a1=3,a(n+1)=2a(n)+3*2^n,(n≥1);
(2)a1=0,a(n+1)=a(n)+2n+1,(n≥1);
(3)a1=1,a(n)=[n/(n-1)]a(n-1)+2n*3^(n-2),(n≥2)
注意:a后面的括号内为下标,看清楚问题,我问的是能否用待定系数法做题!
说可以的请给出解题方法!
你给的三个递推式可以总结为一个:
a[n+1]=f(n)a[n]+g(n)
这个可以用待定函数法,不能只用简单的待定系数
设f(n)=h(n+1)/h(n),h(n)为待定函数
则a[n+1]=h(n+1)/h(n)a[n]+g(n)
两边同时除以h(n+1)得到:
a[n+1]/h(n+1)=a[n]/h(n)+g(n)/h(n+1)
做代换:b[n]=a[n]/h(n)
b[n+1]=b[n]+g(n)/h(n+1)
从而b[n]=b[1]+g(1)/h(2)+g(2)/h(3)+.+g(n-1)/h(n)
待定函数h(n)既可以用观察法求出,也可以用一般的方法:
h(n)=f(1)f(2)...f(n-1)
对于你给的第三题,h(n)=n-1
第二题h(n)=1,第一题h(n)=2^(n-1)
当然,对于f(n)=p,g(n)=b*q^n,其中p,q,b为常数,有特殊的待定系数法
a[n+1]=p*a[n]+b*q^n(p≠q)
设其可以化为:a[n+1]+x*q^(n+1)=p*(a[n]+x*q^n)(x为待定系数)
整理得到:a[n+1]=p*a[n]+(px-qx)*q^n
所以x=b/(p-q)
对于p=q的特殊情况要复杂一些
a[n+1]+x*(n+1)*q^(n+1)=p*(a[n]+x*n*q^n)
整理:a[n+1]=p*a[n]+x*(np-q*(n+1))*q^n=p*a[n]-x*q*q^n(注意p=q)
所以:x=-b/q
对于f(n)=p,g(n)=M(n),M(n)=m[k]*n^k+m[k-1]*n^(k-1)+..+m[0]为多项式的情况
可以设:a[n+1]+R(n+1)=p*(a[n]+R(n))
其中R(n)=r[k]*n^k+r[k-1]*n^(k-1)+...+r[0](r[0],r[1],...,r[k]为待定系数)
通过等式x*(R(n)-R(n+1))=M(n),将多项式展开,然后对比系数可以得到一个k+1元一次方程组,从而求出r[0],r[1],...,r[k]
对于M(n)=k*n+b,p≠1的一次多项式的特殊情况,设R(n)=x*n+y,x,y为待定系数
a[n+1]+x*(n+1)+y=p*(a[n]+x*n+y)
整理:a[n+1]=p*a[n]+(p-1)xn+py-x
从而x(p-1)=k,py-x=b
对于p=1的特殊情况:
R(n)要比M(n)高一次,对于一次多项式,若有递推式:
a[n+1]=a[n]+k*n+b
设R(n)=n(x*n+y)
a[n+1]+(n+1)(xn+y+x)=a[n]+n(xn+y)
整理a[n+1]=a[n]+xn²+ny-(xn²+(2x+y)n+x+y)=a[n]-2xn-x-y
从而k=-2x,-x-y=b,解出x,y即可
说句实话,待定系数法过于麻烦不如我给的第一种方法来得快,对于数列的通项的求法在我的空间有详细的介绍,有时间我再更新一下
a[n+1]=f(n)a[n]+g(n)
这个可以用待定函数法,不能只用简单的待定系数
设f(n)=h(n+1)/h(n),h(n)为待定函数
则a[n+1]=h(n+1)/h(n)a[n]+g(n)
两边同时除以h(n+1)得到:
a[n+1]/h(n+1)=a[n]/h(n)+g(n)/h(n+1)
做代换:b[n]=a[n]/h(n)
b[n+1]=b[n]+g(n)/h(n+1)
从而b[n]=b[1]+g(1)/h(2)+g(2)/h(3)+.+g(n-1)/h(n)
待定函数h(n)既可以用观察法求出,也可以用一般的方法:
h(n)=f(1)f(2)...f(n-1)
对于你给的第三题,h(n)=n-1
第二题h(n)=1,第一题h(n)=2^(n-1)
当然,对于f(n)=p,g(n)=b*q^n,其中p,q,b为常数,有特殊的待定系数法
a[n+1]=p*a[n]+b*q^n(p≠q)
设其可以化为:a[n+1]+x*q^(n+1)=p*(a[n]+x*q^n)(x为待定系数)
整理得到:a[n+1]=p*a[n]+(px-qx)*q^n
所以x=b/(p-q)
对于p=q的特殊情况要复杂一些
a[n+1]+x*(n+1)*q^(n+1)=p*(a[n]+x*n*q^n)
整理:a[n+1]=p*a[n]+x*(np-q*(n+1))*q^n=p*a[n]-x*q*q^n(注意p=q)
所以:x=-b/q
对于f(n)=p,g(n)=M(n),M(n)=m[k]*n^k+m[k-1]*n^(k-1)+..+m[0]为多项式的情况
可以设:a[n+1]+R(n+1)=p*(a[n]+R(n))
其中R(n)=r[k]*n^k+r[k-1]*n^(k-1)+...+r[0](r[0],r[1],...,r[k]为待定系数)
通过等式x*(R(n)-R(n+1))=M(n),将多项式展开,然后对比系数可以得到一个k+1元一次方程组,从而求出r[0],r[1],...,r[k]
对于M(n)=k*n+b,p≠1的一次多项式的特殊情况,设R(n)=x*n+y,x,y为待定系数
a[n+1]+x*(n+1)+y=p*(a[n]+x*n+y)
整理:a[n+1]=p*a[n]+(p-1)xn+py-x
从而x(p-1)=k,py-x=b
对于p=1的特殊情况:
R(n)要比M(n)高一次,对于一次多项式,若有递推式:
a[n+1]=a[n]+k*n+b
设R(n)=n(x*n+y)
a[n+1]+(n+1)(xn+y+x)=a[n]+n(xn+y)
整理a[n+1]=a[n]+xn²+ny-(xn²+(2x+y)n+x+y)=a[n]-2xn-x-y
从而k=-2x,-x-y=b,解出x,y即可
说句实话,待定系数法过于麻烦不如我给的第一种方法来得快,对于数列的通项的求法在我的空间有详细的介绍,有时间我再更新一下
能否用待定系数法求数列通项?
An=2×An-1+n^2+3用数列当中的待定系数法求An的通项公式
数列 求通项公式 一定要用待定系数法
数列递推求通项公式有个什么待定系数法,是怎样的?
为什么可用待定系数法求斐波那契数列的通项公式
数列中 待定系数法求通项
怎么用待定系数法求函数解析式?
待定系数法求数列通项比如 a(n+1)=2a(n)+2^n(a1=2)a 后面的是下标这里设[a(n+1)+λ*2^(n
待定系数法与数列问题我想问,对于数列{1/(an+b)},b为常数,及其衍生形式,怎么用待定系数法,构造出新的等差或等比
待定系数法求一次函数
待定系数法求正比例函数
用待定系数法求……求(x+y)^5