设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=?A.4 B.4√2 C.8 D.8√
设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=?A.4 B.4√2 C.8 D.8√
设两圆C1和C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离C1C2等于?
设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离│C1C2│=?
设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=?请写清楚过程谢谢
设两圆C1,C2 都和两坐标轴相切 且都过点(4,1) 则两圆心的距离|C1C2|=8 答案解析:依题意得设圆心(a,a
求过点A(4,1),且与两坐标轴都相切的圆的方程
求过点A(8,1),且与两坐标轴都相切的圆的方程
已知圆C与两坐标轴都相切,圆心C到直线y=-x的距离等于√2.
已知圆C1 (X+4)平方+Y平方=2 圆C2(X-4)平方+Y平方=2 动圆M与两圆C1 C2 都相切.则动圆的圆心M
已知圆C1与圆C2相交于A(1,3)和B(m,1)两圆的圆心都在直线x-y+c/2=0上,设C(c,0),求A、B、C三
已知两圆C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程
已知抛物线C1:y^2=4x圆C2:(x-1)^2+y^2=1,过抛物线焦点的直线l交C1于A,D两点,交C2于B.C两