作业帮 > 数学 > 作业

已知函数f(x)=2^x-2^(-x),数列{an}满足f(log2an)=-2n (1)求数列{an}的通项公式;(2

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 13:59:04
已知函数f(x)=2^x-2^(-x),数列{an}满足f(log2an)=-2n (1)求数列{an}的通项公式;(2)证
已知函数f(x)=2^x-2^(-x),数列{an}满足f(log2an)=-2n (1)求数列{an}的通项公式;(2)证明:数列{an}是递减数列.
已知函数f(x)=2^x-2^(-x),数列{an}满足f(log2an)=-2n (1)求数列{an}的通项公式;(2
f(log2an)=2^(log2an)-2^(-log2an)=an-1/an=-2n
=>an^2+2n*an-1=0
因为log2an有意义
所以an>0
所以an=√(n^2+1) -n
an =√(n^2+1) -n =1/[√(n^2+1) +n]
于是显然有a(n+1)