作业帮 > 数学 > 作业

如果关于x的一元二次方程2x(kx-4)-x²+6=0没有实数根,求k得最小整数值

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:10:07
如果关于x的一元二次方程2x(kx-4)-x²+6=0没有实数根,求k得最小整数值
不许抄
原方程可整理为:(2k-1)x^2-8x+6=0
因为方程没有实数根
所以 b²-4ac
不要
根据一般式ax^2+bx+c=0配方得来
ax^2+bx+c=0(a≠0)
两边都除以a
得X^2+b/aX+c/a=0
再配方
得X^2+b/aX+(b/2a)^2=-c/a+(b/2a)^2
(X+b/2a)^2=b²-4ac/4a^2
如果b²-4ac大于等于0
X=-b±根号下b^2-4ac/2a
补充回答:(b)2-4ac大于0,方程有两根,函数与x轴有两交点
(b)2-4ac等于0,方程有一根,函数与x轴有一交点
(b)2-4ac小于0,方程没有根,函数与x轴没有交点
补充回答:-b±根号下b^2-4ac/2a
这个就是方程的两个根:
(b)2-4ac大于0,方程有两根,函数与x轴有两交点
(b)2-4ac等于0,方程有一根,函数与x轴有一交点
(b)2-4ac小于0,方程没有根,函数与x轴没有交点
如果关于x的一元二次方程2x(kx-4)-x²+6=0没有实数根,求k得最小整数值
根据一元二次方程根的判别式啊△=b²-4ac.
△>0,方程两解,=0一解,