X,Y的密度函数知道,U,V是X,Y的线性组合,求U,V的密度函数
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 22:30:31
X,Y的密度函数知道,U,V是X,Y的线性组合,求U,V的密度函数
如果知道X.Y的概率密度,知道U,V是X,Y的线性组合,求U,V的密度函数怎么求解.具体例如:X,Y都服从参数是1的指数分布,且相互独立.U=X+Y,V=X-Y,求U和V的分布函数或密度函数?谢谢高手提供一题多解的思路.只要要思路和方法.当然有具体过程更好.
如果知道X.Y的概率密度,知道U,V是X,Y的线性组合,求U,V的密度函数怎么求解.具体例如:X,Y都服从参数是1的指数分布,且相互独立.U=X+Y,V=X-Y,求U和V的分布函数或密度函数?谢谢高手提供一题多解的思路.只要要思路和方法.当然有具体过程更好.
密度函数法
f(u,v)=f(x(u,v),y(u,v))|Jacob|
f(x(u,v),y(u,v))就是把 f(x,y)里面的x,y代替成u,v
按这个例子,就是解出x=(u+v)/2,y=(u-v)/2 然后代入f(x,y),把f(x,y)变成f(u,v)
Jacobian=绝对值(det |dx/du dy/du| )=|(dx/du)(dy/dv)-(dxdv)(dydu)|
( |dx/dv dy/dv |)
x,y对于u,v的四个偏导就根据x=(u+v)/2,y=(u-v)/2求出来就好了
jacobian=|-1/4-1/4|=1/2
f(x,y)=e^(-x-y)
f(x(u,v),y(u,v))=e^(-u) 这个很明显,
f(u,v)=e^(-u)/2
还有分布函数法,实际上一样的道理
F(u(x,y),v(x,y))=∫(0~y)∫(0~x)f(x,y)dxdy 这里默认为指数分布所以下限为0,但不是所有的分布定义域都这样
dxdy换底换成dudv要乘以jacobian=1/2 刚才求过
所以
F(u,v)=∫(-无穷~v)∫(0~u)f(x(u,v),y(u,v))/2 dudv (v= x-y可以取到负无穷的,不过对接下来求密度函数没有影响)
然后求 F²(u,v)/dudv 正好就是u,v底积分里面的函数式
f(x(u,v),y(u,v))/2
=e^(-u)/2
值得一提的是,jacobian不一定是常量,有可能是各种恶心的变量
比如遇到u=x/y,v=x+y这些种情况
x=uv/(1+u)
y=v/(1+u)
jacobian=|(dx/du)(dy/dv)-(dx/dv)(dy/du)|
=|(v/(1+u)²)(-1/(1+u))-(u/(1+u)(-v/(1+u)²)|
=|(u-1)v/(1+u)³|
这时还得根据u,v的取值情况判断大于零还是小于0,导致jacobian的值不同,要根据u,v取值分段代入不同的jacobian
f(u,v)=f(x(u,v),y(u,v))|Jacob|
f(x(u,v),y(u,v))就是把 f(x,y)里面的x,y代替成u,v
按这个例子,就是解出x=(u+v)/2,y=(u-v)/2 然后代入f(x,y),把f(x,y)变成f(u,v)
Jacobian=绝对值(det |dx/du dy/du| )=|(dx/du)(dy/dv)-(dxdv)(dydu)|
( |dx/dv dy/dv |)
x,y对于u,v的四个偏导就根据x=(u+v)/2,y=(u-v)/2求出来就好了
jacobian=|-1/4-1/4|=1/2
f(x,y)=e^(-x-y)
f(x(u,v),y(u,v))=e^(-u) 这个很明显,
f(u,v)=e^(-u)/2
还有分布函数法,实际上一样的道理
F(u(x,y),v(x,y))=∫(0~y)∫(0~x)f(x,y)dxdy 这里默认为指数分布所以下限为0,但不是所有的分布定义域都这样
dxdy换底换成dudv要乘以jacobian=1/2 刚才求过
所以
F(u,v)=∫(-无穷~v)∫(0~u)f(x(u,v),y(u,v))/2 dudv (v= x-y可以取到负无穷的,不过对接下来求密度函数没有影响)
然后求 F²(u,v)/dudv 正好就是u,v底积分里面的函数式
f(x(u,v),y(u,v))/2
=e^(-u)/2
值得一提的是,jacobian不一定是常量,有可能是各种恶心的变量
比如遇到u=x/y,v=x+y这些种情况
x=uv/(1+u)
y=v/(1+u)
jacobian=|(dx/du)(dy/dv)-(dx/dv)(dy/du)|
=|(v/(1+u)²)(-1/(1+u))-(u/(1+u)(-v/(1+u)²)|
=|(u-1)v/(1+u)³|
这时还得根据u,v的取值情况判断大于零还是小于0,导致jacobian的值不同,要根据u,v取值分段代入不同的jacobian
X,Y的密度函数知道,U,V是X,Y的线性组合,求U,V的密度函数
设y=u^v,u,v是x的可导函数,证明:dy/dx=u^v(v/u*du/dx+lnu*dv/dx)
若随机变量X服从U(0,2),求Y=X^2的概率密度函数,
设随机变量X~U(0,π),求:随机变量 Y=2X+1的密度函数...
设随机变量X~U(0,1),求Y=1/X的概率密度函数
设X~U[0,2],求Y=3X的密度函数
多元函数微分 隐函数 函数z=z(x,u)由方程组x=f(u,v),y=g(u,v),z=h(u,v)所确定,求z对x的
设随机变量X~U(0,1),求Y=-InX的密度函数
设随机变量X~U(0,π),求Y=cosx的概率密度函数
设随机变量x~U[0,1]Y~U[0,2]并且X和Y相互独立 求min[x,y]的概率密度函数
多元函数偏导难题u=f(ux,v+y);v=g(u-x,v^2y)...f,g 可微,求u关于x的偏导及v关于x的偏导
概率论题目:设X~U[0,5],求Y=-3X+5的分布函数及密度函数.