已知A=,b=,则线性方程组Ax=b,(1)当a=?,方程组无解,当a?时,方程组有唯一解,且解为?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 22:06:43
已知A=,b=,则线性方程组Ax=b,(1)当a=?,方程组无解,当a?时,方程组有唯一解,且解为?
(3)当a?时,方程组有无穷多解,且通解为?
b=(-8 13 3 11)^T
A=1 3 -14 -14
-2 -5 24 25
-1 -1 a+6 8
-5 -5 a+30 a^2-5a+40
(3)当a?时,方程组有无穷多解,且通解为?
b=(-8 13 3 11)^T
A=1 3 -14 -14
-2 -5 24 25
-1 -1 a+6 8
-5 -5 a+30 a^2-5a+40
写出增广矩阵为
1 3 -14 -14 -8
-2 -5 24 25 13
-1 -1 a+6 8 3
-5 -5 a+30 a^2-5a+40 11 第1行加上第3行,第2行减去第3行×2,第4行减去第3行×5
0 2 a-8 -6 -5
0 -3 12-2a 9 7
-1 -1 a+6 8 3
0 0 -4a a^2-5a -4 第3行乘以-1,第2行加上第1行×2,交换第1和第3行
1 1 -a-6 -8 -3
0 -3 12-2a 9 7
0 2 a-8 -6 -5
0 0 -4a a^2-5a -4 第2行加上第3行×2
1 1 -a-6 -8 -3
0 1 -4 -3 -3
0 2 a-8 -6 -5
0 0 -4a a^2-5a -4 第1行减去第2行,第3行减去第2行×2
1 0 -a-2 -5 0
0 1 -4 -3 -3
0 0 a 0 1
0 0 -4a a^2-5a -4 第4行加上第3行×4
1 0 -a-2 -5 0
0 1 -4 -3 -3
0 0 a 0 1
0 0 0 a^2-5a 0
(1)
显然只有在a=0时,系数矩阵的秩才会小于增广矩阵的秩,
所以a=0时,方程组无解
(2)
有唯一解的话,
a^2-5a≠0,所以解得a≠5或0
那么化简为
1 0 -a-2 -5 0
0 1 -4 -3 -3
0 0 a 0 1
0 0 0 1 0 第3行除以a,第1行加上第4行×5,第2行加上第4行×3
1 0 -a-2 0 0
0 1 -4 0 -3
0 0 1 0 1/a
0 0 0 1 0 第1行加上第3行×(a+2),第2行加上第3行×4
1 0 0 0 1+2/a
0 1 0 0 -3+4/a
0 0 1 0 1/a
0 0 0 1 0
解得x=(1+2/a,-3+4/a,1/a,0)^T
(3)
有无穷多解的话,
a^2-5a=0且a≠0
即a=5
那么化简为
1 0 -7 -5 0
0 1 -4 -3 -3
0 0 5 0 1
0 0 0 0 0 第3行除以5
1 0 -7 -5 0
0 1 -4 -3 -3
0 0 1 0 1/5
0 0 0 0 0 第1行加上第3行×7,第2行加上第3行×4
1 0 0 -5 7/5
0 1 0 -3 -11/5
0 0 1 0 1/5
0 0 0 0 0
秩为3,所以通解有4-3=1个向量
得到通解向量为(5,3,0,1)^T,特解则为(7/5,-11/5,1/5,0)^T
所以解得
X=c*(5,3,0,1)^T+(7/5,-11/5,1/5,0)^T,C为常数
1 3 -14 -14 -8
-2 -5 24 25 13
-1 -1 a+6 8 3
-5 -5 a+30 a^2-5a+40 11 第1行加上第3行,第2行减去第3行×2,第4行减去第3行×5
0 2 a-8 -6 -5
0 -3 12-2a 9 7
-1 -1 a+6 8 3
0 0 -4a a^2-5a -4 第3行乘以-1,第2行加上第1行×2,交换第1和第3行
1 1 -a-6 -8 -3
0 -3 12-2a 9 7
0 2 a-8 -6 -5
0 0 -4a a^2-5a -4 第2行加上第3行×2
1 1 -a-6 -8 -3
0 1 -4 -3 -3
0 2 a-8 -6 -5
0 0 -4a a^2-5a -4 第1行减去第2行,第3行减去第2行×2
1 0 -a-2 -5 0
0 1 -4 -3 -3
0 0 a 0 1
0 0 -4a a^2-5a -4 第4行加上第3行×4
1 0 -a-2 -5 0
0 1 -4 -3 -3
0 0 a 0 1
0 0 0 a^2-5a 0
(1)
显然只有在a=0时,系数矩阵的秩才会小于增广矩阵的秩,
所以a=0时,方程组无解
(2)
有唯一解的话,
a^2-5a≠0,所以解得a≠5或0
那么化简为
1 0 -a-2 -5 0
0 1 -4 -3 -3
0 0 a 0 1
0 0 0 1 0 第3行除以a,第1行加上第4行×5,第2行加上第4行×3
1 0 -a-2 0 0
0 1 -4 0 -3
0 0 1 0 1/a
0 0 0 1 0 第1行加上第3行×(a+2),第2行加上第3行×4
1 0 0 0 1+2/a
0 1 0 0 -3+4/a
0 0 1 0 1/a
0 0 0 1 0
解得x=(1+2/a,-3+4/a,1/a,0)^T
(3)
有无穷多解的话,
a^2-5a=0且a≠0
即a=5
那么化简为
1 0 -7 -5 0
0 1 -4 -3 -3
0 0 5 0 1
0 0 0 0 0 第3行除以5
1 0 -7 -5 0
0 1 -4 -3 -3
0 0 1 0 1/5
0 0 0 0 0 第1行加上第3行×7,第2行加上第3行×4
1 0 0 -5 7/5
0 1 0 -3 -11/5
0 0 1 0 1/5
0 0 0 0 0
秩为3,所以通解有4-3=1个向量
得到通解向量为(5,3,0,1)^T,特解则为(7/5,-11/5,1/5,0)^T
所以解得
X=c*(5,3,0,1)^T+(7/5,-11/5,1/5,0)^T,C为常数
若n元非齐次线性方程组Ax=b,且R(A,b)=n+1,则该方程组有没有解?
已知方程组{①2x+ay=b ②x+2y=3当a≠( )时,方程组有唯一的解;当a=()时,b=()时,方程组有无数的
已知方程组ax+2y=8,3x+6y=b,当a,b为何值时,次方程组无解
已知方程组2x+ay=b x+2y=3 当a不等于____时,方程组有唯一的解.当a等于___,b=____时,方程组有
刘老师:设A为mxn矩阵,b≠0,且r(A)=n,则线性方程组Ax=b()A有唯一解B有无穷多解C无解D可能无解
设非齐次性线性方程组AX=b的增广矩阵B=(A|b)为m阶方阵,且|B|不等于0,则该方程组解得情况是什么
对于未知数为x的方程ax+1=2x+b,当a、b满足( )时,方程有唯一解;而当a、b满足( )时,方程无解;而当a、b
设A是n阶方阵,当条件 成立时,n元线性方程组AX=b有唯一解
设A是n阶方阵,当条件( ) 成立时,n元线性方程组AX=b有唯一解
当a、b为何值时,关于x、y的方程组:ax-y=b、3x+2y=b+5.1、有唯一解,2、有无数解,3、无解.
当a( )b( )时,方程ax+1=x-b有唯一解;当a( ),b( )时,方程ax+1=x-b无解,当a( )b( )
非齐次线性方程组Ax=b中,m*n矩阵A的n个列向量线性无关,则方程组有唯一解.