设双曲线x^2/a^2-y^2/b^2=1(a>o,b>0)的两个焦点分别为F1,F2,点Q是双曲线上除顶点外的任意一点
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 20:15:54
设双曲线x^2/a^2-y^2/b^2=1(a>o,b>0)的两个焦点分别为F1,F2,点Q是双曲线上除顶点外的任意一点,过焦点F2作∠F1QF2的平分线的垂线,垂足为P,则P点的轨迹是( )
A.圆的一部分
B.椭圆的一部分
C.双曲线的一部分
D.抛物线的一部分
已知点A(2,2)在椭圆x^2/25+y^2/16=1内,动点P在椭圆上,则线段∣PA∣+∣PF2∣的最大值与最小值之和为( )
A.25
B.20
C.16
D.12
对于抛物线y^2=4x上的任意一点Q,点P(a,0)都满足∣PQ∣≥a,则a的取值范围是?
A.圆的一部分
B.椭圆的一部分
C.双曲线的一部分
D.抛物线的一部分
已知点A(2,2)在椭圆x^2/25+y^2/16=1内,动点P在椭圆上,则线段∣PA∣+∣PF2∣的最大值与最小值之和为( )
A.25
B.20
C.16
D.12
对于抛物线y^2=4x上的任意一点Q,点P(a,0)都满足∣PQ∣≥a,则a的取值范围是?
不妨设为F1左焦点,F2为右焦点,延长F1P与QF2或其延长线交于R点,则由QP⊥RF1,QP平分∠F1QF2,有△QPF1≌△QPR,得QF1=QR,于是
|RF2|=||QR|-|QF2||=||QF1|-|QF2||=2a
点R的轨迹:(x-c)^2+y^2=(2a)^2
P是F1R的中点,故P是圆
(x-c)^2+y^2=a^2
的一部分
|RF2|=||QR|-|QF2||=||QF1|-|QF2||=2a
点R的轨迹:(x-c)^2+y^2=(2a)^2
P是F1R的中点,故P是圆
(x-c)^2+y^2=a^2
的一部分
设双曲线x^2/a^2-y^2/b^2=1 两焦点为F1、F2,点Q为双曲线上除顶点外的任一点,过焦点F1作
已知点P是双曲线x^2/a^2-y^2/b^2=1上除顶点外的右支上的任意一点,F1,F2是它的焦点,
双曲线x^2-y^2=a^2(a>0)的两个焦点分别为F1,F2,P为双曲线上任意一点,求证:|PF1|,|PO|,|P
双曲线x^2-y^2=a^2(a>0)的两个焦点分别为F1,F2,P为双曲线上任意一点,求证:|PF1||PO||PF2
设O为坐标原点,F1,F2是双曲线x^2/a^2-y^2/b^2=1 (a>0,b>0)的焦点,若在双曲线上存在点P,满
1.设F1,F2分别为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右两焦点,P为双曲线右支上任意一点,
15.已知Q点是双曲线x*2/a*2-y*2/b*2=1(a,b>0)上异于两顶点的以动点,F1,F2是双曲线的左右焦点
已知Q点是双曲线x^2/a^2-y^2/b^2=1(a,b>0)上异于两顶点的动点,F1、F2是双曲线的左右两焦点.
已知点F1,F2分别为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点,P为双曲线左支上的任意一点,
已知F1,F2为双曲线上x^2/a^2-y^2/b^2=0(a>0,b>0)的两个焦点,p为双曲线右支上异于顶点的的任意
一直双曲线x^2/a^2 - y^2/b^2 =1(a>0,b>0)的左右焦点F1、F2,点Q为双曲线上一点
设O为坐标原点,F1,F2是双曲线 x^2/a^2-y^2/x^2=1(a>0,b>0)的焦点,若在双曲线上存在点P,满