设A是n阶方阵,证明齐次线性方程组AX=0与(A^T)AX=O是同解方程组.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 06:47:40
设A是n阶方阵,证明齐次线性方程组AX=0与(A^T)AX=O是同解方程组.
A是实方阵吧.
证明:记A'=A^T
(1)设X1是AX=0的解,则AX1=0
所以A'AX1=A'(AX1)=A'0=0
所以X1是A'AX=0的解.
故 Ax=0 的解是 A'AX=0 的解.
(2)设X2是A'AX=0的解,则A'AX2=0
等式两边左乘 X2'得 X2'A'AX2=0
所以有 (Ax2)'(Ax2)=0
所以 AX2=0.[长度为0的实向量必为0向量,此时用到A是实矩阵]
所以X2是AX=0的解.
故A'AX=0的解是AX=0的解.
综上知齐次线性方程组AX=0与A'AX=O是同解方程组.
证明:记A'=A^T
(1)设X1是AX=0的解,则AX1=0
所以A'AX1=A'(AX1)=A'0=0
所以X1是A'AX=0的解.
故 Ax=0 的解是 A'AX=0 的解.
(2)设X2是A'AX=0的解,则A'AX2=0
等式两边左乘 X2'得 X2'A'AX2=0
所以有 (Ax2)'(Ax2)=0
所以 AX2=0.[长度为0的实向量必为0向量,此时用到A是实矩阵]
所以X2是AX=0的解.
故A'AX=0的解是AX=0的解.
综上知齐次线性方程组AX=0与A'AX=O是同解方程组.
设A是n阶方阵,证明齐次线性方程组AX=0与(A^T)AX=O是同解方程组.
设A是n阶方阵,则齐次线性方程组AX=0有非零解的充要条件是非齐次线性方程组 AX=b有无穷多解 这句话对吗?
线性代数题.设A是m*n矩阵,证明齐次线性方程组Ax=0与AtAx=0同解.
设A是一个N*N矩阵,证明:如果A的秩等于A平方的秩,则齐次线性方程组AX=0与齐次线性方程组A平方X=0同解.
A是m*n矩阵,η1……ηt是齐次方程组Ax=0的基础解系,a是非齐次线性方程组Ax=b的一个解,证明方程组 Ax=b
设A是n阶方阵 已知线性方程组AX=0有非零解 证明A^2=0也有非零解
设η1与η2是非齐次线性方程组Ax=b的两个不同解(A是m×n矩阵),ξ是对应的齐次线性方程组Ax=0的非零解,证明:
设A为m×n实矩阵,证明线性方程组Ax=0与A'Ax=0同解
线性代数:设A为n阶方阵,若齐次线性方程组Ax=0只有零解则非齐次线性方程组Ax=b解的个数是?
线性方程组的一道问题证明:设A为m*n矩阵,AT是A的转置矩阵,则n元齐次线性方程组AX=O与ATAX=O同解
又来求救啦!线性代数! 设a是非齐次线性方程组Ax=b的一个解 , t1,.t(n-r) 是对应的齐次线性方程组
线性代数问题设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应 设A是m×n阶矩阵,Ax=0是非齐次线性方程组